Bayesian inverse problems for soft tissue mechanics
软组织力学的贝叶斯反问题
基本信息
- 批准号:2596737
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the last few decades, a large body of literature has focussed on mathematically modelling the mechanical behaviour of biological soft tissues within a continuum mechanics framework. Particular attention has focused on deriving constitutive equations within the context of large strain (nonlinear) elasticity and viscoelasticity. Many of the most widely used models take a phenomenological approach (for example, by proposing a strain energy which is an exponential function of the strain invariants, with free parameters that can be fitted to experimental data); however, this approach cannot be used to predict the effects of microstructural changes on macroscale mechanics. An alternative approach explicitly models the microstructure of the soft tissue, with measurable parameters to describe the geometry of the collagen fibre network that makes up the tissue, along with simple (linear) constitutive equations for the collagen fibres themselves. These linear constitutive models fit experimental data on individual collagen fibres well; however, due to the difficulty in precisely measuring the geometries of, and forces acting on, fibres that can be as small as tens of nanometres in diameter, the reported values of the constitutive parameters (e.g. the collagen Young's modulus) vary by orders of magnitude. This uncertainty in the values of these parameters makes it difficult to make quantitative predictions with deterministic, microstructural models; therefore, an alternative approach is needed which accounts for the uncertainty. In this project, we will invoke the Bayesian framework, which, by incorporating the models of soft tissues with prior beliefs and macroscale experimental data, will give us a posterior probability distribution of the parameters conditioned on the observations. These distributions contain not only information about the likely values of the parameters, but also allow us to quantify and assess the uncertainty inherent in the estimates that arise from them. In practice this can be achieved by implementing Markov chain Monte Carlo (MCMC) methods, which through construction of an ergodic Markov chain with stationary distribution equal to the posterior distribution, allows us to sample from the distribution in order to characterise it. This might be done through the implementation of existing MCMC methods, or through the design of new methodologies which are able to efficiently target the types of distributions which arise from these inverse problems.
在过去的几十年里,大量的文献集中于在连续介质力学框架内对生物软组织的力学行为进行数学建模。特别关注在大应变(非线性)弹性和粘弹性的背景下推导本构方程。许多最广泛使用的模型采用现象学方法(例如,通过提出应变不变量的指数函数的应变能,其自由参数可以与实验数据拟合);然而,这种方法不能用于预测微观结构变化对宏观尺度力学的影响。另一种方法明确地模拟软组织的微结构,用可测量的参数来描述构成组织的胶原纤维网络的几何形状,以及胶原纤维本身的简单(线性)本构方程。这些线性本构模型很好地符合单个胶原纤维的实验数据;然而,由于难以精确测量直径可小至数十纳米的纤维的几何形状和作用力,已报道的本构参数(例如,胶原杨氏模数)的值按数量级变化。这些参数值的这种不确定性使得用确定性的微观结构模型进行定量预测变得困难;因此,需要一种解释这种不确定性的替代方法。在这个项目中,我们将引用贝叶斯框架,通过结合具有先验信念的软组织模型和宏观实验数据,我们将给出基于观测条件的参数的后验概率分布。这些分布不仅包含有关参数的可能值的信息,而且还允许我们量化和评估由它们引起的估计中固有的不确定性。在实践中,这可以通过实现马尔可夫链蒙特卡罗(MCMC)方法来实现,该方法通过构造平稳分布等于后验分布的遍历马尔可夫链,允许我们从分布中采样以对其进行表征。这可以通过实施现有的MCMC方法来实现,或者通过设计能够有效地针对由这些逆问题产生的分布类型的新方法来实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
新型简化Inverse Lax-Wendroff方法的发展与应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
- 批准号:11801143
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
- 批准号:
2237628 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Machine Learning for Bayesian Inverse Problems
贝叶斯逆问题的机器学习
- 批准号:
2208535 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Tensor decomposition sampling algorithms for Bayesian inverse problems
贝叶斯逆问题的张量分解采样算法
- 批准号:
EP/T031255/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Design and Sensitivity Analysis of Infinite-Dimensional Bayesian Inverse Problems
无限维贝叶斯反问题的设计与敏感性分析
- 批准号:
2111044 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scalable Approaches for Large-Scale Data-driven Bayesian Inverse Problems in High Dimensional Parameter Spaces
职业:高维参数空间中大规模数据驱动的贝叶斯逆问题的可扩展方法
- 批准号:
1845799 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
Analysis of maximum a posteriori estimators: Common convergence theories for Bayesian and variational inverse problems
最大后验估计量分析:贝叶斯和变分逆问题的常见收敛理论
- 批准号:
415980428 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
CAREER: Large-Scale Bayesian Inverse Problems Governed by Differential and Differential-Algebraic Equations
职业:微分方程和微分代数方程控制的大规模贝叶斯逆问题
- 批准号:
1654311 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Classification of Methods for Bayesian Inverse Problems Governed by Partial Differential Equations
偏微分方程治理贝叶斯反问题方法的分类
- 批准号:
1723211 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Bayesian Inverse Problems and Model Uncertainties
贝叶斯逆问题和模型不确定性
- 批准号:
1714617 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant