PERCEPTUAL LEARNING: HUMAN VS. OPTIMAL BAYESIAN

感知学习:人类与机器

基本信息

项目摘要

DESCRIPTION (provided by applicant): Human performance in a large range of visual tasks improves with practice. One process by which observers' accuracy increases is due to an improvement in their ability to use task-relevant (signal) information. However, the dynamics of the human neural algorithm mediating this learning process is mostly unknown. We hypothesize that a new experimental paradigm can help elucidate the human learning algorithm as well as identify the human sources of learning inefficiency by allowing comparisons of empirically measured human perceptual learning performance to that of an optimal Bayesian learner and other suboptimal learning models. To achieve this goal we propose four Specific Aims: (1) to develop an experimental paradigm that allows the investigator to compare human perceptual learning to the learning of an optimal Bayesian learner as well as other suboptimal learning models for five specific tasks involving learning about different visual attributes; (2) to develop a battery of diagnostic tests to compare human and model learning; (3) to measure human visual performance psychophysically for the five proposed visual tasks and compare them to model performance using the battery of diagnostic tests; and (4) to use the developed experimental and theoretical framework to evaluate the efficiency of the human use of different modes of feedback on learning. The proposed work will improve our understanding of the human neural algorithms mediating the dynamics of adult perceptual learning and identify different sources of inefficiency in human learning. Finally, the experimental protocols and theoretical framework proposed will provide a novel, powerful and flexible framework that other researchers can use to evaluate normal adult and infant perceptual learning in a variety of tasks and sensory modalities, to assess learning in humans with visual disorders and/or learning disabilities, and could potentially be used in conjunction with cell recording and/or brain imaging.
描述(由申请人提供):人类在大范围视觉任务中的表现随着练习而提高。观察者准确度提高的一个过程是由于他们使用与任务相关的(信号)信息的能力的提高。然而,人类神经算法调节这一学习过程的动力学大多是未知的。我们假设,一种新的实验范式可以帮助阐明人类学习算法,并通过允许将经验测量的人类感知学习性能与最优贝叶斯学习器和其他次优学习模型进行比较,来识别学习效率低下的人类来源。为了实现这一目标,我们提出了四个具体目标:(1)开发一个实验范式,使研究人员能够比较人类知觉学习与最佳贝叶斯学习者的学习,以及涉及不同视觉属性学习的五个特定任务的其他次优学习模型;(2)开发一组诊断测试,以比较人类和模型学习;(3)从心理生理角度衡量五个拟议视觉任务的人类视觉表现,并将它们与使用一组诊断测试的模型表现进行比较;以及(4)使用开发的实验和理论框架来评估人类使用不同学习反馈模式的效率。这项拟议的工作将提高我们对调节成人知觉学习动态的人类神经算法的理解,并找出人类学习效率低下的不同来源。最后,提出的实验方案和理论框架将提供一个新颖、强大和灵活的框架,其他研究人员可以用来评估正常的成人和婴儿在各种任务和感觉模式下的知觉学习,评估患有视觉障碍和/或学习障碍的人类的学习,并可能与细胞记录和/或脑成像一起使用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miguel Patricio Eckstein其他文献

Miguel Patricio Eckstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miguel Patricio Eckstein', 18)}}的其他基金

Visual Search in 3D Medical Imaging Modalities
3D 医学成像模式中的视觉搜索
  • 批准号:
    10186742
  • 财政年份:
    2018
  • 资助金额:
    $ 24.42万
  • 项目类别:
Visual Search in 3D Medical Imaging Modalities
3D 医学成像模式中的视觉搜索
  • 批准号:
    9977201
  • 财政年份:
    2018
  • 资助金额:
    $ 24.42万
  • 项目类别:
Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
  • 批准号:
    8889132
  • 财政年份:
    2015
  • 资助金额:
    $ 24.42万
  • 项目类别:
Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
  • 批准号:
    9275500
  • 财政年份:
    2015
  • 资助金额:
    $ 24.42万
  • 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
  • 批准号:
    8619634
  • 财政年份:
    2013
  • 资助金额:
    $ 24.42万
  • 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
  • 批准号:
    8436142
  • 财政年份:
    2013
  • 资助金额:
    $ 24.42万
  • 项目类别:
Perceptual Learning: Human vs. Optimal Bayesian
感知学习:人类与最佳贝叶斯
  • 批准号:
    8123224
  • 财政年份:
    2004
  • 资助金额:
    $ 24.42万
  • 项目类别:
Perceptual Learning: Human vs. Optimal Bayesian
感知学习:人类与最佳贝叶斯
  • 批准号:
    7988249
  • 财政年份:
    2004
  • 资助金额:
    $ 24.42万
  • 项目类别:
PERCEPTUAL LEARNING: HUMAN VS. OPTIMAL BAYESIAN
感知学习:人类与机器
  • 批准号:
    7125433
  • 财政年份:
    2004
  • 资助金额:
    $ 24.42万
  • 项目类别:
PERCEPTUAL LEARNING: HUMAN VS. OPTIMAL BAYESIAN
感知学习:人类与机器
  • 批准号:
    6932289
  • 财政年份:
    2004
  • 资助金额:
    $ 24.42万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.42万
  • 项目类别:
    Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
Clinical Research and Academic Success in Obstetrics & Gynecology
产科临床研究和学术成就
  • 批准号:
    10828252
  • 财政年份:
    2023
  • 资助金额:
    $ 24.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了