Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
基本信息
- 批准号:8889132
- 负责人:
- 金额:$ 42.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyBrainBreastBreast MicrocalcificationCaliforniaClinical ResearchComputersData SetDetectionDevelopmentDiagnosticDigital Breast TomosynthesisDiseaseEvaluationEye MovementsGenerationsGeometryGoalsHumanHybridsImageIndividualIndustryInvestigationLaboratoriesLeadLesionMagnetic ResonanceManufacturer NameMeasurementMedical ImagingModelingNeurosciencesPennsylvaniaPerformancePeripheralProcessProtocols documentationPsychophysicsRadiology SpecialtyReadingResolutionRetinalRotationScanningSliceTechnologyTextureThree-Dimensional ImageTranslatingUnited States Food and Drug AdministrationUniversitiesUniversity HospitalsVisualVisual FieldsVisual system structureWomanX-Ray Computed Tomographybaseclinically relevantcomputational neurosciencecostdensityimage processingimprovednew technologynext generationpublic health relevanceradiologistsample fixationtechnology developmenttoolvalidation studiesvirtualvisual processvisual processingvisual search
项目摘要
DESCRIPTION (provided by applicant): Medical image quality can be objectively defined in terms of diagnostic decision accuracy in clinically relevant perceptual tasks. Because of the high cost and effort involved in evaluating image quality using clinical studies, especially in early technological developments, there has been an ongoing effort to develop numerical algorithms (model observers) that can be applied to images to predict human accuracy in clinically relevant perceptual tasks. In recent years model observers have transitioned from laboratory investigations to actual tools used in technology development in the industry and for image quality evaluation by manufacturers to seek approval from the Food and Drug Administration. However, the recent increase of the use of 3D medical images (computed tomography, breast tomosynthesis, magnetic resonance) has motivated a need for the development of the next generation of model observers. A fundamental limitation of current model observers is that they disregard that the human brain processes an image with decreasing spatial resolution from the point of fixation. With 3D data-sets, radiologists rarely exhaustively fixate every region of every
slice; instead, they process a significant portion of images with their retinal periphery which has
drastically different visual processing. Increased computer power and recent advances in the understanding of the computational neuroscience of visual search provide the opportunity to develop the next generation model observers which potentially can more accurately characterize how radiologists scrutinize medical images, as well as their decision accuracy and errors. The current project proposes to develop the 1st model observer to emulate radiologists by processing medical images with varying spatial processing resolution across the human visual field, searching through the image with simulated eye movements, and reaching a decision through integration across fixations. The foveated search model, which makes eye movements unlike any previous model observer in medical imaging, will be the 1st model to emulate radiologists in making two distinct types of errors: search errors ( missed lesions that are not fixated) perceptual errors (missed lesion that are fixated). The decisions and eye movements of over twenty radiologists reading digital breast tomosynthesis (DBT) images will be compared to the newly proposed foveated search model and a comprehensive list of existing non-scanning and scanning model observers in what will represent the most extensive validation study to date of model observers with actual radiologists' decisions. The newly proposed model will be utilized to optimize DBT acquisition geometry and compared to use of current metrics of medical image quality. If successful, the newly proposed foveated search model will allow for more accuracy assessment of medical image quality, could be utilized to accelerate the evaluation of new technology, optimize parameters of current technology and gain a better understanding how radiologists search and reach diagnostic decisions.
描述(由申请人提供):医学图像质量可以根据临床相关感知任务中的诊断决策准确性来客观定义。由于使用临床研究评估图像质量需要高昂的成本和精力,特别是在早期技术发展中,因此人们一直在努力开发可应用于图像的数值算法(模型观察者),以预测临床相关感知任务中的人类准确性。近年来,模型观察器已从实验室研究转变为行业技术开发中使用的实际工具,以及制造商用于图像质量评估以寻求食品和药物管理局批准的工具。然而,最近 3D 医学图像(计算机断层扫描、乳房断层合成、磁共振)使用的增加激发了开发下一代模型观察者的需求。当前模型观察者的一个基本限制是,他们忽视了人脑处理图像的空间分辨率从固定点开始逐渐降低。借助 3D 数据集,放射科医生很少能够详尽地固定每个区域的每个区域
片;相反,他们用视网膜周边处理大部分图像
截然不同的视觉处理。计算机能力的增强以及对视觉搜索计算神经科学的理解的最新进展,为开发下一代模型观察者提供了机会,这些观察者可能可以更准确地描述放射科医生检查医学图像的方式及其决策准确性和错误。当前的项目建议开发第一个模型观察者来模拟放射科医生,通过在人类视野中处理具有不同空间处理分辨率的医学图像,通过模拟眼球运动搜索图像,并通过跨注视点的集成做出决策。中心凹搜索模型使眼球运动不同于医学成像中任何先前的模型观察者,这将是第一个模仿放射科医生犯两种不同类型错误的模型:搜索错误(遗漏未固定的病变)和感知错误(遗漏固定的病变)。超过 20 名放射科医生阅读数字乳腺断层合成 (DBT) 图像时的决策和眼球运动将与新提出的中心凹搜索模型以及现有非扫描和扫描模型观察者的综合列表进行比较,这将代表迄今为止模型观察者与实际放射科医生决策的最广泛的验证研究。新提出的模型将用于优化 DBT 采集几何结构,并与当前医学图像质量指标的使用进行比较。如果成功,新提出的中心点搜索模型将能够更准确地评估医学图像质量,可用于加速新技术的评估,优化当前技术的参数,并更好地了解放射科医生如何搜索并做出诊断决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miguel Patricio Eckstein其他文献
Miguel Patricio Eckstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miguel Patricio Eckstein', 18)}}的其他基金
Visual Search in 3D Medical Imaging Modalities
3D 医学成像模式中的视觉搜索
- 批准号:
10186742 - 财政年份:2018
- 资助金额:
$ 42.37万 - 项目类别:
Visual Search in 3D Medical Imaging Modalities
3D 医学成像模式中的视觉搜索
- 批准号:
9977201 - 财政年份:2018
- 资助金额:
$ 42.37万 - 项目类别:
Assessment of medical image quality with foveated search models
使用中心点搜索模型评估医学图像质量
- 批准号:
9275500 - 财政年份:2015
- 资助金额:
$ 42.37万 - 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
- 批准号:
8619634 - 财政年份:2013
- 资助金额:
$ 42.37万 - 项目类别:
Neural representation of scene context during visual search
视觉搜索过程中场景上下文的神经表示
- 批准号:
8436142 - 财政年份:2013
- 资助金额:
$ 42.37万 - 项目类别:
Perceptual Learning: Human vs. Optimal Bayesian
感知学习:人类与最佳贝叶斯
- 批准号:
8123224 - 财政年份:2004
- 资助金额:
$ 42.37万 - 项目类别:
Perceptual Learning: Human vs. Optimal Bayesian
感知学习:人类与最佳贝叶斯
- 批准号:
7988249 - 财政年份:2004
- 资助金额:
$ 42.37万 - 项目类别:
相似海外基金
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 42.37万 - 项目类别:
Standard Grant
Learning in the Human Brain: Anatomy, Physiology and Computation
人脑的学习:解剖学、生理学和计算
- 批准号:
2725902 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别:
Studentship
BRAIN Integrated Resource for Human Anatomy and Intracranial Neurophysiology
BRAIN 人体解剖学和颅内神经生理学综合资源
- 批准号:
10505412 - 财政年份:2022
- 资助金额:
$ 42.37万 - 项目类别:
CAREER: Evo-Developmental Interactions of Craniofacial and Brain Anatomy
职业:颅面和大脑解剖学的进化发育相互作用
- 批准号:
2045466 - 财政年份:2021
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant
CAREER:Identifying Brain Anatomy and Function for Risky Behaviors in Large-Scale Imaging and Genetics Studies
职业:在大规模成像和遗传学研究中识别危险行为的大脑解剖结构和功能
- 批准号:
1942917 - 财政年份:2020
- 资助金额:
$ 42.37万 - 项目类别:
Continuing Grant
Gatekeeper – Bioprinting in vitro mini-models with recapitulating in vivo anatomy of the blood-brain barrier using remodelable elastin-like protein bioinks and neural progenitor cells
Gatekeeper â 使用可重塑弹性蛋白样蛋白质生物墨水和神经祖细胞来生物打印体外微型模型,重现血脑屏障的体内解剖结构
- 批准号:
425869082 - 财政年份:2019
- 资助金额:
$ 42.37万 - 项目类别:
Research Fellowships
Collaboratory for atlasing cell type anatomy in the female and male mouse brain
雌性和雄性小鼠大脑图谱细胞类型解剖学合作实验室
- 批准号:
9415873 - 财政年份:2017
- 资助金额:
$ 42.37万 - 项目类别:
The Development of Brain Anatomy and Connectivity in Males and Females with Autism Spectrum Disorder during Adolescence
患有自闭症谱系障碍的男性和女性青春期大脑解剖结构和连接性的发展
- 批准号:
271513085 - 财政年份:2015
- 资助金额:
$ 42.37万 - 项目类别:
Research Grants
Does anatomy explain behaviour in the developing mouse brain?
解剖学可以解释发育中的小鼠大脑的行为吗?
- 批准号:
466397-2014 - 财政年份:2014
- 资助金额:
$ 42.37万 - 项目类别:
University Undergraduate Student Research Awards
Anatomy-Driven Brain Connectivity Mapping
解剖驱动的大脑连接图谱
- 批准号:
EP/L023067/1 - 财政年份:2014
- 资助金额:
$ 42.37万 - 项目类别:
Research Grant














{{item.name}}会员




