Wider Applications of Lattice Field Theory
晶格场论的更广泛应用
基本信息
- 批准号:2601488
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum field theory is one of the most successful, and widely used, approaches in theoretical physics however, in some cases the mathematical equations are not solvable using a pen and paper. One possible first-principle numerical technique is lattice field theory, in which the continuous dimensions of space and time are restricted to a fixed grid of points with links between them. In this way a system can be modelled using a computer, with increasing precision as the number of points on the grid is increased. This method has been widely used to investigate quantum chromodynamics, the theory of the strong nuclear force that governs the interactions between quarks, which is not analytically solvable due to the strength of the interactions. Lattice field theory may also be used to investigate the behaviour of many body systems, such as graphene, which is relevant in condensed matter physics. Increasingly lattice field theory is being used to investigate the behaviour of beyond the standard model physics, for example, models which include supersymmetry as well as matrix models of string theory such as the Banks-Fischler-Shenker-Susskind model. One area of particular interest is quantum chaos. Classically chaos is defined by the paths of initially close states separating from one another at an exponential rate. This behaviour can also be observed in quantum systems and plays a key role in the thermalization of many body systems, such as the quark-gluon plasma produced during collisions of heavy ions. With black holes being maximally chaotic quantum systems, studies of quantum chaos might also shed light on the theory of quantum gravity. In this project, we plan to study the emergence of nearly maximal quantum chaos in many-body quantum systems. Such systems in the regime of maximal chaos will provide us with microscopic models for black-hole-like physics. In particular, we plan to develop methods for the numerical extraction of thermalization rates (largest Lyapunov exponents) from the results of Monte-Carlo simulations in Euclidean time. We further plan to apply these methods to study the temperature dependence of Lyapunov exponents in gauge theories of strong interactions. In addition to this we will look to employ lattice field theory to a variety of other models, including continuing work that I collaborated on previously which used lattice field theory to demonstrate that the onset of chiral symmetry breaking and the Gross-Witten-Wadia transition, between confinement and partial confinement, coincide in the Eguchi-Kawai model.
量子场论是理论物理学中最成功和最广泛使用的方法之一,然而,在某些情况下,数学方程是无法用笔和纸解决的。一种可能的第一性原理数值技术是格场理论,在格场理论中,空间和时间的连续维度被限制在一个固定的点网格中,这些点之间有联系。通过这种方式,可以使用计算机对系统进行建模,随着网格上的点的数量增加,精度也会增加。这种方法已被广泛用于研究量子色动力学,这是一种控制夸克之间相互作用的强核力理论,由于相互作用的强度,它无法解析求解。晶格场论也可以用来研究许多物体系统的行为,例如石墨烯,这与凝聚态物理学有关。格点场论越来越多地被用来研究超越标准模型的物理行为,例如,包括超对称性的模型以及弦论的矩阵模型,如班克斯-费歇尔-申克-萨斯金德模型。一个特别感兴趣的领域是量子混沌。经典的混沌定义为初始状态以指数速率彼此分离的路径。这种行为也可以在量子系统中观察到,并且在许多身体系统的热化中起着关键作用,例如重离子碰撞过程中产生的夸克-胶子等离子体。由于黑洞是最混沌的量子系统,对量子混沌的研究也可能为量子引力理论提供线索。在这个项目中,我们计划研究多体量子系统中近极大量子混沌的出现。这种处于最大混沌状态的系统将为我们提供类黑洞物理学的微观模型。特别是,我们计划开发的热化率(最大的李雅普诺夫指数)的数值提取的方法,从蒙特-卡罗模拟的结果在欧几里得时间。我们还计划应用这些方法来研究强相互作用规范理论中李雅普诺夫指数的温度依赖性。除此之外,我们还将把格场理论应用于其他各种模型,包括我以前合作的继续工作,这些工作使用格场理论来证明手征对称性破缺和Gross-Witten-Wadia转变的开始,在禁闭和部分禁闭之间,在江口-川合模型中是一致的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
- 批准号:
RGPIN-2020-05800 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Additive manufacturing of composite lattice and shell structures for lightweight applications
用于轻量化应用的复合晶格和壳结构的增材制造
- 批准号:
561039-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
- 批准号:
RGPIN-2020-05800 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Lattice QCD study of diquark interactions and its applications to the excitation spectrum of Lambda_c baryon
双夸克相互作用的晶格QCD研究及其在Lambda_c重子激发谱中的应用
- 批准号:
21K03535 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Additive manufacturing of composite lattice and shell structures for lightweight applications
用于轻量化应用的复合晶格和壳结构的增材制造
- 批准号:
561039-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alliance Grants
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
- 批准号:
RGPIN-2020-05800 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
study on discrete point sets to produce new applications of lattice theory and algebraic computation
研究离散点集以产生格论和代数计算的新应用
- 批准号:
19K03628 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lattice-based shape memory and superelastic structures: design, manufacture, modeling, and applications
基于晶格的形状记忆和超弹性结构:设计、制造、建模和应用
- 批准号:
RGPIN-2019-04088 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Functionally Graded Lattice Structure Applications in Additive Manufacturing of Orthopedic Implants
功能梯度晶格结构在骨科植入物增材制造中的应用
- 批准号:
518494-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Functionally Graded Lattice Structure Applications in Additive Manufacturing of Orthopedic Implants
功能梯度晶格结构在骨科植入物增材制造中的应用
- 批准号:
518494-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral