3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS

用于承载生物医学应用的 3D 打印超弹性晶格结构

基本信息

  • 批准号:
    RGPIN-2020-05800
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

The proposed research program aims at developing lattice-based implants with enhanced biomechanical compatibility and geometric conformity, by bridging the fields of biomechanics, mechanical design, materials science and technology. The application focus of this research program is intervertebral cages, since these devices play a significant role in the quality of life of patients with spinal disorders, and none of the currently available designs offers a satisfying solution. The applicant suggests that superelastic lattice-based implants with enhanced biomechanical and geometrical compatibilities will improve the outcome of implantation by optimizing the load sharing capacity of such devices and facilitating their installation. The development and ex vivo validation of a new generation of orthopedic implants constitute the main innovative aspects of this research. In order to mimic the behavior of surrounding bone, and maintain the mechanical strength of an implant, while providing adequate pore size for bone ingrowth, the project starts with the structural optimization and modeling of different lattice structure candidates. Next, these structures will be 3D-printed from a superelastic shape memory alloy and subjected to static and fatigue mechanical testing in order to establish scaling relations between the functional properties of cellular structures and their bulk material equivalents. To avoid the trial-and-error approach when optimizing these structures, their superelastic behavior will be simulated using a multi-scale numerical modeling approach, and the numerical results will be compared with the experimental observations. Next, intervertebral cage prototypes will be designed and tested to simulate physiological movements of the spine: compression, flexion/extension and axial rotation. Prototype cages will be retro-engineered to fit the intervertebral spaces in two typical locations (cervical and lumbar), using CT files obtained from patients. Finally, in the perspective of just-in-time implant delivery to the operation room, a technologically reliable and economically viable workflow will be developed. The body of knowledge created during this research will be directly transposable from intervertebral cages (application focus of this program) to other load-bearing personalized implant applications, namely, endoprostheses for the replacement of critical bone defects following bone tumors or invasive soft tissue sarcomas. Furthermore, a better understanding of the impact of the 3D printing technology on the service properties, especially with respect to fatigue, will be widely applicable, and will not be limited exclusively to shape memory alloys and the medical domain. Finally, the proposed program will contribute to the multidisciplinary (biomechanics, mechanical design, materials science, metallurgy) training of highly qualified personnel and attract top-level local and foreign students to ETS.
拟议的研究计划旨在通过桥接生物力学,机械设计,材料科学和技术的领域来开发具有增强生物力学兼容性和几何形状合规性的基于晶格的植入物。该研究计划的应用重点是椎间笼,因为这些设备在脊柱疾病患者的生活质量中起着重要作用,并且当前可用的设计都没有提供令人满意的解决方案。申请人认为,具有增强生物力学和几何兼容性的超弹性基于晶格的植入物将通过优化此类设备的负载共享能力并促进其安装来改善植入的结果。新一代骨科植入物的开发和实体验证构成了这项研究的主要创新方面。为了模仿周围骨骼的行为,并保持植入物的机械强度,同时为骨向内生长提供了足够的孔径,该项目始于不同晶格结构候选物的结构优化和建模。接下来,这些结构将从超弹性形状的存储合金中进行3D打印,并进行静态和疲劳机械测试,以建立细胞结构的功能性能与其块状材料等效物之间的缩放关系。为了避免在优化这些结构时进行试验方法,将使用多尺度数值建模方法对其超弹性行为进行模拟,并将数值结果与实验观察结果进行比较。 接下来,将设计和测试椎骨原型以模拟脊柱的生理运动:压缩,屈曲/延伸和轴向旋转。使用从患者获得的CT文件中,将重新设计原型笼子,以适合两个典型位置(宫颈和腰部)的椎间空间。最后,从及时植入物运送到操作室的角度来看,将开发出技术可靠且经济可行的工作流程。 在这项研究中创建的知识物体将直接从椎间笼(该程序的应用重点)直接转座,转换为其他承重的个性化植入物应用,即,内预本植物以替换骨骼肿瘤或侵入性软组织肉瘤后临界骨缺陷的临界骨缺陷。此外,对3D打印技术对服务属性的影响(尤其是在疲劳方面)的影响将是广泛适用的,并且不会仅限于塑造内存合金和医疗领域。最后,拟议的计划将为高素质人员的多学科(生物力学,机械设计,材料科学,冶金学)培训做出贡献,并吸引顶级本地和外国学生进入ETS。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brailovski, Vladimir其他文献

Monolithic superelastic rods with variable flexural stiffness for spinal fusion: Simplified finite element analysis of an instrumented spine segment
Laser Powder Bed Fusion of Water-Atomized Iron-Based Powders: Process Optimization
Manufacturing and Characterization of Novel Ti-Zr-Based Shape Memory Alloys
  • DOI:
    10.1016/j.matpr.2017.04.084
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konopatsky, Anton;Brailovski, Vladimir;Prokoshkin, Sergey
  • 通讯作者:
    Prokoshkin, Sergey
Kinetic features of the isothermal ω-phase formation in superelastic Ti-Nb-Zr alloys
  • DOI:
    10.1016/j.matlet.2022.132820
  • 发表时间:
    2022-07-12
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Baranova, Alexandra;Dubinskiy, Sergey;Brailovski, Vladimir
  • 通讯作者:
    Brailovski, Vladimir
Design of Shape Memory Alloy Actuators for Morphing Laminar Wing With Flexible Extrados
  • DOI:
    10.1115/1.3160310
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Georges, Thomas;Brailovski, Vladimir;Terriault, Patrick
  • 通讯作者:
    Terriault, Patrick

Brailovski, Vladimir的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brailovski, Vladimir', 18)}}的其他基金

3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
  • 批准号:
    RGPIN-2020-05800
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Flaw detection and damage tolerant design of Ti64 components produced by laser powder bed fusion
激光粉末床熔合生产的 Ti64 部件的缺陷检测和损伤容限设计
  • 批准号:
    534535-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
3D printing of refractory metals and alloys for aerospace and energy applications
用于航空航天和能源应用的难熔金属和合金 3D 打印
  • 批准号:
    561066-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Alliance Grants
3D-PRINTED SUPERELASTIC LATTICE-BASED STRUCTURES FOR LOAD-BEARING BIOMEDICAL APPLICATIONS
用于承载生物医学应用的 3D 打印超弹性晶格结构
  • 批准号:
    RGPIN-2020-05800
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Flaw detection and damage tolerant design of Ti64 components produced by laser powder bed fusion
激光粉末床熔合生产的 Ti64 部件的缺陷检测和损伤容限设计
  • 批准号:
    534535-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimizing the rheology of metal powder feedstock for the production of high-density components by powder metallurgy, additive manufacturing and metal injection molding techniques
优化金属粉末原料的流变性,通过粉末冶金、增材制造和金属注射成型技术生产高密度部件
  • 批准号:
    505289-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Flaw detection and damage tolerant design of Ti64 components produced by laser powder bed fusion
激光粉末床熔合生产的 Ti64 部件的缺陷检测和损伤容限设计
  • 批准号:
    534535-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Lattice-based shape memory and superelastic structures: design, manufacture, modeling, and applications
基于晶格的形状记忆和超弹性结构:设计、制造、建模和应用
  • 批准号:
    RGPIN-2019-04088
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Post-processing of laser powder bed-fused IN625 components for better mechanical properties,surface finish and tolerances
对激光粉末床熔融 IN625 部件进行后处理,以获得更好的机械性能、表面光洁度和公差
  • 批准号:
    508356-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants
Optimizing the rheology of metal powder feedstock for the production of high-density components by powder metallurgy, additive manufacturing and metal injection molding techniques
优化金属粉末原料的流变性,通过粉末冶金、增材制造和金属注射成型技术生产高密度部件
  • 批准号:
    505289-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

面向3D打印平行机的精确调度算法与动态调整机制研究
  • 批准号:
    72301196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
  • 批准号:
    32360595
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
  • 批准号:
    32371472
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于宏微功能基元的4D打印NiTi合金制备研究
  • 批准号:
    52371027
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Studentship
Reverse Design of Tuneable 4D Printed Materials for Soft Robotics
用于软体机器人的可调谐 4D 打印材料的逆向设计
  • 批准号:
    DE240100960
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Early Career Researcher Award
STTR Phase II: Fabrication and Structural Testing of a 3D Concrete Printed Anchor for Floating Offshore Wind
STTR 第二阶段:用于浮动海上风电的 3D 混凝土打印锚的制造和结构测试
  • 批准号:
    2333306
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Cooperative Agreement
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
  • 批准号:
    24K20065
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Empowering Wearable Smart Devices with 3D Printed Energy Storage
通过 3D 打印能量存储为可穿戴智能设备提供支持
  • 批准号:
    DP240100892
  • 财政年份:
    2024
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了