Learning robot navigation and manipulation from demonstrations
通过演示学习机器人导航和操作
基本信息
- 批准号:2601734
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Objectives:- To research and implement a Learning from demonstrations method of navigation for mobile robot to perform complex navigation tasks independent of their domain.- To research implement a Learning from demonstrations method of navigation for mobile manipulator robots to perform complex manipulation tasks as well as complex navigation tasks independent of a robot's domain.- To implement autonomy on a mobile manipulator machine, which is usually teleoperated by an operator, using the researched Learning from demonstrations methods.Humans teleoperate machines to perform mobile navigation and manipulation tasks. Current autonomous system approaches are domain specific. Therefore, human operators are still in charge of the movement of their robots.This research studies Learning from demonstrations (LfDs) so the same teleoperated machines can be transformed to perform autonomously.The proposed research involves taking quantitative control data from human demonstrations. While a robot is learning a task from a demonstration, it must decipher useful task information from the noise in the control data. The research extends to not only just being able to replay the demonstration, but to also to adapting the execution of the task according to variations within the robot's environment.LfDs methods for mobile robots and mobile manipulators already exist, however these methods do not generalise the task and depend on the robot's system dynamics being known. They also use sensors which are expensive such as LIDAR rather than camera sensors. The LfD methods I would research into, and implement on mobile robots and mobile manipulators, is inspired from the work into manipulator robots conducted by Dr. Amir Ghalamzan. However, remapping of the existing models for manipulator robots onto the mobile robots and mobile manipulators will not be enough to make these robots fully autonomous.I will be looking further into state-of-the-art deep learning methods so that the robots do not only mimic or imitate the demonstrated task. But be able to generate ways of emulating demonstrations and include those demonstrations when learning the task. The idea is to improve the execution of the task and be able to generalise to be independent of the robot's domain.The outcome of the research is to produce a computationally efficient and effective method of implementing autonomy on mobile machines. The human re-programmable nature of the LfDs for the robots will increase the level of robot adaptation, as robot experts will not be required to continually reprogram the robots.
目的:-研究并实现一种用于移动机器人执行与其领域无关的复杂导航任务的演示学习导航方法。-研究实现移动机械臂机器人执行复杂操作任务以及独立于机器人领域的复杂导航任务的导航演示学习方法。-使用所研究的演示学习方法在通常由操作员远程操作的移动机械手机器上实现自主性。当前的自主系统方法是特定于领域的。因此,操作者仍然负责机器人的移动。本研究研究从演示中学习(LFD),以使相同的遥操作机器可以被转换为自主执行。当机器人从演示中学习任务时,它必须从控制数据中的噪声中破译出有用的任务信息。该研究不仅扩展到能够重放演示,而且扩展到根据机器人环境中的变化来调整任务的执行。移动机器人和移动机械手的LFD方法已经存在,但是这些方法不能概括任务并且依赖于机器人的系统动力学是已知的。他们还使用昂贵的传感器,如激光雷达,而不是相机传感器。我要研究的LFD方法,并在移动机器人和移动机械手上实施,是受到Amir Ghalamzan博士对机械手机器人的研究的启发。然而,将现有的机械手机器人模型重新映射到移动机器人和移动机械手上并不足以使这些机器人完全自主。我将进一步研究最先进的深度学习方法,使机器人不仅模仿或模仿演示的任务。但能够生成模拟演示的方法,并在学习任务时包含这些演示。这个想法是为了改善任务的执行,并能够推广到独立于机器人的领域。研究的结果是产生一种在移动机器上实现自主性的计算高效和有效的方法。机器人的LFD的人类可重新编程的性质将提高机器人的适应水平,因为机器人专家将不需要不断地对机器人进行重新编程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
- 批准号:61175096
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Underwater Robot Navigation and Localization During Recovery by Optical Homing and Penning
水下机器人在回收过程中通过光学寻的和潘宁进行导航和定位
- 批准号:
2330416 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Robust robot location and behaviors for on-farm navigation.
用于农场导航的强大机器人位置和行为。
- 批准号:
10073593 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Research on robot-assisted minimally invasive surgical device with 3D image navigation
3D图像导航机器人辅助微创手术装置研究
- 批准号:
2885460 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
-- - 项目类别:
CAREER: Human-Inspired Multi-Robot Navigation
职业:受人类启发的多机器人导航
- 批准号:
2402338 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Socially Aware Robot Navigation in Human-populated Scenario
人类场景中具有社交意识的机器人导航
- 批准号:
23KJ0580 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Indoor Mobile Robot Navigation
室内移动机器人导航
- 批准号:
572565-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Autonomous Quadrupedal Robot Navigation and Hiking in Challenging Rough Terrains
具有挑战性的崎岖地形中的自主四足机器人导航和徒步旅行
- 批准号:
2736841 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Localisation and Navigation of a robot on an offshore wind turbine blade using intelligent algorithms
使用智能算法对海上风力涡轮机叶片上的机器人进行定位和导航
- 批准号:
10033977 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Using ant biology and natural environments to enhance models of vision and robot navigation
利用蚂蚁生物学和自然环境来增强视觉和机器人导航模型
- 批准号:
2768907 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship