Autonomous anomaly detection and self-healing in a smart test environment

智能测试环境中的自主异常检测和自我修复

基本信息

  • 批准号:
    2602893
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

To achieve net zero by 2050, the IEA have stated that 50% of the technology required is yet to be developed, thus, rapid testing and development in all sectors is required. Increased intensity of testing could however have a significant impact on energy demand, which already conflicts with a transition to renewable generation. The automotive industry continues to support, and in many instances grow, an already carbon intensive transport sector; despite lulls during the COVID-19 pandemic and increased electric vehicle sales, road transport still equates to around 28% of global carbon emissions. Therefore one area of focus to support the required decarbonisation of the automotive sector, whilst allowing new low-carbon technology to be developed, is associated with increasing the efficiency and efficacy of the testing phase of vehicle technology development. Physical testing is time consuming due to real-time constraints and complex and technologically delicate systems, and is thus, highly energy intensive. Additionally, human-errors in set up, faulty or mis-calibrated sensors, or unforeseen mechanical failures are often only identified post-test and result in these tests being redundant and needing to be repeated. Virtual testing environments play a role in minimising these tests, allowing simulations to be run earlier in the development process and for more use-cases to be considered. However, if not provided with robust physical data, these models will not be able to accurately simulate hardware responses - they therefore still rely on physical testing for the test data used to adapt and optimise the virtual models. Some physical testing will also still be required for technology to be suitable for market release to account for product variance, unknown effects and simulation inaccuracies. As the general change of the powertrain development process makes it harder to compensate poor measurement quality by engineering experience, anomaly detection - a method of finding unexpected patterns in data - presents a possible solution to minimise physical testbed time whilst increasing the reliability of real data to feed into virtual simulation models. If applied to a range of powertrain units, be it internal combustion engine, pure electrical drive, fuel cell or hybrid setup, it has the potential to reduce the energy intensity of vehicle testing and development, whilst simultaneously increasing the speed at which low-carbon technologies can be released into the public domain to aid large scale decarbonisation of the transport sector.To address this challenge this project will undertake three broad methodological approaches. First, an exploratory analysis of what constitutes an anomaly in different contexts; this will include qualitative studies regarding what data quality is and whether it is consistent across applications. Second, a methodological exploration using historic or synthetic data; this will explore different anomaly detection approaches, be it statistical or machine learning (including but not limited to classification, clustering and fuzzy logic), and test these on existing or artificially altered data. Finally, a specific anomaly detection approach will be refined and tested iteratively on real testbed data.In practise, the outputs of this project will facilitate more effective testing of automotive technology on a testbed by reducing redundant tests and subsequently improving the quality of data being used for virtual models and simulations. More effective testing will have two key impacts, first, allowing new, low-carbon technologies to be developed and deployed to the consumer faster, thus aiding the transition to a net zero society. Second, it will reduce the energy intensity of the testing and development phase of mobility options due to minimal wasted tests and more effective virtual models, which will also support decarbonisation targets through reduced energy demand.
为了到2050年实现净零排放,国际能源署表示,所需技术的50%尚未开发,因此需要在所有部门进行快速测试和开发。然而,测试强度的增加可能会对能源需求产生重大影响,这已经与向可再生能源发电的过渡相冲突。汽车行业继续支持,并在许多情况下增长,已经是碳密集型的运输部门;尽管在2019冠状病毒病大流行期间出现了短暂的间歇,电动汽车销量也有所增加,但公路运输仍占全球碳排放量的28%左右。因此,在允许开发新的低碳技术的同时,支持汽车行业所需的脱碳的一个重点领域是提高汽车技术开发测试阶段的效率和功效。由于实时限制和复杂且技术上精细的系统,物理测试是耗时的,因此是高度能源密集型的。此外,人为错误的设置,故障或错误校准的传感器,或不可预见的机械故障往往只能在测试后识别,导致这些测试是多余的,需要重复。虚拟测试环境在最小化这些测试方面发挥了作用,允许在开发过程中更早地运行模拟,并考虑更多的用例。然而,如果没有提供可靠的物理数据,这些模型将无法准确地模拟硬件响应——因此,它们仍然依赖于物理测试,用于适应和优化虚拟模型的测试数据。为了使技术适合市场发布,考虑到产品差异、未知影响和模拟不准确性,还需要进行一些物理测试。由于动力总成开发过程的总体变化使得工程经验难以弥补较差的测量质量,异常检测-一种发现数据中意外模式的方法-提供了一种可能的解决方案,可以最大限度地减少物理测试时间,同时增加真实数据的可靠性,以提供给虚拟仿真模型。如果应用于一系列动力系统单元,无论是内燃机、纯电驱动、燃料电池还是混合动力装置,它都有可能降低车辆测试和开发的能源强度,同时加快低碳技术进入公共领域的速度,以帮助运输部门大规模脱碳。为了应对这一挑战,本项目将采取三种广泛的方法。首先,探索性分析在不同背景下异常的构成;这将包括关于什么是数据质量以及数据质量在各个应用程序之间是否一致的定性研究。第二,使用历史或合成数据进行方法论探索;这将探索不同的异常检测方法,无论是统计还是机器学习(包括但不限于分类、聚类和模糊逻辑),并在现有或人为改变的数据上测试这些方法。最后,对一种特定的异常检测方法进行了改进,并在真实的试验台数据上进行了迭代测试。在实践中,该项目的产出将通过减少冗余测试并随后提高用于虚拟模型和模拟的数据质量,促进在试验台对汽车技术进行更有效的测试。更有效的测试将产生两个关键影响,首先,允许新的低碳技术更快地开发出来并向消费者部署,从而帮助向净零社会过渡。其次,它将减少移动选项测试和开发阶段的能源强度,因为它将最小化浪费的测试和更有效的虚拟模型,这也将通过减少能源需求来支持脱碳目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Situated Anomaly Detection in an Open Environment
在开放环境中进行异常检测
  • 批准号:
    FT230100121
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
  • 批准号:
    2338642
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Temporal Graph Mining for Anomaly Detection
用于异常检测的时间图挖掘
  • 批准号:
    DP240101547
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Federated embedding models for privacy-preserving anomaly detection in bank transactions
用于银行交易中隐私保护异常检测的联合嵌入模型
  • 批准号:
    900260
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
  • 批准号:
    23K11222
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
  • 批准号:
    23K11238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ATD: Predictive Anomaly Detection for Spatio-Temporal Data with Multidimensional Persistence
ATD:具有多维持久性的时空数据的预测异常检测
  • 批准号:
    2220613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Artificial Intelligence assisted echocardiography to facilitate optimal image extraction for congenital heart defects diagnosis in Sub-Saharan Africa
人工智能辅助超声心动图促进撒哈拉以南非洲先天性心脏缺陷诊断的最佳图像提取
  • 批准号:
    10710681
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ATD: Algorithms and Geometric Methods for Community and Anomaly Detection and Robust Learning in Complex Networks
ATD:复杂网络中社区和异常检测以及鲁棒学习的算法和几何方法
  • 批准号:
    2220271
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了