Understanding Electrode-Electrolyte Interfaces for Next-Generation Batteries

了解下一代电池的电极-电解质界面

基本信息

  • 批准号:
    2603728
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The production capacity of batteries is set to rise drastically within the coming decades, precipitated by the projected expansion in renewable (yet intermittent) power generation, the upcoming bans on diesel and petrol engines that are driving a rapid increase in electric car manufacture, and the permeation of decentralised power networks, among many other influences. The scale of resource extraction required to furnish such storage needs necessitates the development of a new generation of batteries with improvements in sustainability, performance, and safety characteristics over current battery technologies.The substitution of conventional liquid electrolytes (LEs) with novel solid electrolytes (SEs) in glassy, ceramic, and other polycrystalline phases has shown promise in addressing these requirements. Potential SEs have demonstrated characteristics such as cycling stabilities on the order of supercapacitors, high room temperature ionic conductivities, wide electrochemical windows, and improved safety under compromisation of cell structure (when electric cars crash, for example) due to their thermodynamic stability in air. Despite these advantages, the incorporation of SEs into operational, all-solid-state batteries (ASSBs) presents a myriad of constraints to be mitigated. For example, where LEs enable fast interfacial kinetics due to a high degree of electrode wetting, SE-electrode interfaces induce a rate-limitation due to high resistance, thereby inhibiting ion transport. This high resistance is considered to originate owing to crystal lattice mismatch, poor interfacial contact, ion-deficient space-charge layers, and interphase formation. Hence, such complex challenges, amongst many others, make finding suitable SE materials a highly non-trivial task.To fully optimise these candidate materials as electrolytes, a comprehensive understanding of the interfacial and bulk ion dynamics is needed. However, owing to the buried nature of interfaces and transport mechanisms, the direct observation of ion mobility is difficult and the complete dynamic picture, which is crucial to the design of high-performance SSBs, therefore remains elusive. In this vein, this project aims to elucidate the structural motifs responsible for improved ionic conductivity; carefully combining results from materials synthesis and characterisation with those from density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations.One family of materials hosting many promising candidate SEs are sulphides, where the polarisability of the sulphide anion provides a low electrostatic barrier to ion migration, with, for example, Li10GeP2S12 (LGPS) and Li6PS5Cl showing room temperature ionic conductivities on the order of, and surpassing, many organic LEs. Recent work on lithium-boron-sulphur-type systems suggest better ionic conductivities and electrochemical stabilities than LGPS, and it is within this family where this research project will begin. The effects of different synthetic methods and compositional doping on structure and the resulting conductivity of candidate SEs will be explored using a combination of X-ray and neutron powder diffraction with multinuclear solid-state NMR spectroscopy. It is anticipated that DFT and AIMD calculations will assist in elucidating ion mobility mechanisms in such systems, and provide valuable insights into potential optimisation routes for future high-performance SE materials and interfaces.
电池的生产能力将在未来几十年内大幅增长,这是由于可再生(但间歇性)发电的预计扩张,即将禁止柴油和汽油发动机,这将推动电动汽车制造的快速增长,以及分散式电网的渗透,以及许多其他影响。为了满足这种存储需求,需要开发新一代电池,这些电池在可持续性、性能和安全特性方面都要优于当前的电池技术。用玻璃态、陶瓷态和其他多晶相的新型固体电解质(SE)替代传统的液体电解质(LE),已显示出满足这些要求的前景。潜在的SE已经证明了诸如超级电容器量级的循环稳定性、高室温离子电导率、宽电化学窗口以及由于它们在空气中的热力学稳定性而在电池结构受损(例如,当电动汽车碰撞时)下改进的安全性的特性。尽管有这些优势,但将SE纳入可操作的全固态电池(ASSB)仍存在许多需要缓解的限制。例如,在LE由于高度的电极润湿而实现快速界面动力学的情况下,SE-电极界面由于高电阻而引起速率限制,从而抑制离子传输。这种高电阻被认为是由于晶格失配、界面接触不良、离子缺陷空间电荷层和界面形成而产生的。因此,在众多挑战中,这些复杂的挑战使得寻找合适的SE材料成为一项非常重要的任务。为了充分优化这些候选材料作为电解质,需要全面了解界面和体离子动力学。然而,由于界面和传输机制的掩埋性质,离子迁移率的直接观察是困难的,因此对于高性能SSB设计至关重要的完整动态图像仍然难以捉摸。在这方面,本项目旨在阐明负责改善离子导电性的结构基序;将材料合成和表征的结果与密度泛函理论(DFT)计算和从头算分子动力学(AIMD)模拟的结果仔细结合。具有许多有希望的候选SE的材料家族是硫化物,其中硫化物阴离子的极化性为离子迁移提供了低的静电势垒,例如,Li 10 GeP 2S 12(LGPS)和Li 6PS 5Cl显示出室温离子电导率约为,并且超过,许多有机的。最近对锂-硼-硫型系统的研究表明,它比LGPS具有更好的离子电导率和电化学稳定性,本研究项目将开始在该系列中。不同的合成方法和组成掺杂对结构和所得的导电性的候选SE的影响将探索使用X射线和中子粉末衍射与多核固态NMR光谱的组合。预计DFT和AIMD计算将有助于阐明此类系统中的离子迁移机制,并为未来高性能SE材料和界面的潜在优化路线提供有价值的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Decoupling Corrosion of Electrode and Electrolyte in Advanced Batteries
先进电池中电极和电解质的解耦腐蚀
  • 批准号:
    24K17761
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
  • 批准号:
    2338917
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Active control of ion diffusion dynamics at the electrolyte/electrode interface by utilizing mixed anion surface
利用混合阴离子表面主动控制电解质/电极界面的离子扩散动力学
  • 批准号:
    23KK0104
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Rational Heterogeneity of Membrane Electrode Assemblies for Next-Generation Polymer Electrolyte Fuel Cells (HETEROMEA)
下一代聚合物电解质燃料电池膜电极组件的合理异质性(HETEROMEA)
  • 批准号:
    EP/X023656/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2312247
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of surface-modified electrode/carbonate-based polymer electrolyte interfece for all-solid-state battery
全固态电池表面改性电极/碳酸酯基聚合物电解质界面剂的研制
  • 批准号:
    22H01789
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of flexible Li metal secondary battery based on modification technology at solid polymer electrolyte/electrode interface
基于固体聚合物电解质/电极界面改性技术的柔性锂金属二次电池的开发
  • 批准号:
    22KK0069
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Theoretical investigation of the ionic conduction mechanism between highly concentrated electrolyte and electrode
高浓度电解质与电极之间离子传导机制的理论研究
  • 批准号:
    21J12566
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cryo-SEM observation of electrolyte wetting phenomena in a lithium-air battery and elucidation of high-performance electrode structure
锂空气电池中电解液润湿现象的冷冻扫描电镜观察及高性能电极结构的阐明
  • 批准号:
    21H01255
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Understanding and Tailoring the Anode-Electrolyte Interfacial Layers on the Stabilization of Lithium Metal Electrode
合作研究:理解和定制阳极-电解质界面层对锂金属电极稳定性的影响
  • 批准号:
    2038082
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了