Accurate prediction of chemical reactions in solution
准确预测溶液中的化学反应
基本信息
- 批准号:2605031
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The discovery of new molecules to develop novel materials, agrochemicals, drugs, and therapies is essential to tackle contemporary challenges. However, the rising environmental and economic costs of generating useful novel compounds have placed increased pressure on the chemical sectors. Hence, approaches that can speed up and make the discovery and development processes more efficient are urgently needed. Computational chemistry has become a well-established tool in the development of chemical processes. However, its full potential to transform molecular discovery has been hindered by the limitations of the approaches available. Current methodologies suffer from a lack of generality, accuracy and high cost, making them hard to implement in automated generic workflows. To tackle some of these issues, the Duarte group has developed a computational tool, autodE, which automates the characterisation of reaction pathways using SMILES string representations of reactants and products as inputs. Key features include i) applicability to both organic and organometallic reactions, ii) consideration of conformational sampling of both minima and transition states, and iii) compatibility with several public electronic structure theory packages. However, at present, it is limited by the cost associated with electronic structure methods and solvent description, which hinders its wide use to routinely explore complex catalytic processes and reactions in solution. This is partly due to the description of solvent effects, which is critical in the prediction of chemical reactivity, as solvent effects can bias the preference for a given conformation or reaction pathway. Solvent effects are commonly modelled implicitly with continuum approaches that capture bulk polarisation effects; however, they fail to describe specific solute-solvent interactions, which are crucial to describe charged species. In these cases, explicit solvation may be required to achieve the desired predictive accuracy. The primary objective of this project is to introduce streamlined computational strategies to investigate chemical reactivity in solution, and to use this information to guide reaction optimisation and catalyst design. In collaboration with AstraZeneca, this project seeks to capitalise upon the use of state-of-the-art computational tools and predictive machine learning (ML) models to characterise and predict challenging reactions in solution. More specifically, explicit solvation will be introduced into autodE combining ML potentials for efficient sampling and quadratic string methods to characterise transition states. The implementations developed will be utilised in route design and development and applied for the optimisation of catalysts and substrates in organocatalysed and metal-catalysed reactions. The computational tools arising from this project will be general and widely applicable to different reactions classes and systems, which will accelerate the identification of catalysts and optimal reaction conditions across a wide range of chemical processes. Furthermore, the outcomes of this project will contribute to academic and industrial research in the areas of predictive synthesis, catalysis, process chemistry, computational and theoretical chemistry, and software development. This project falls within the EPSRC Physical Sciences research area.
发现新分子以开发新材料、农用化学品、药物和疗法对于应对当代挑战至关重要。然而,产生有用的新型化合物的环境和经济成本不断上升,给化学部门带来了越来越大的压力。因此,迫切需要能够加快并使发现和开发过程更有效的方法。计算化学已经成为化学过程开发中的一个成熟工具。然而,其改变分子发现的全部潜力受到可用方法的限制的阻碍。目前的方法缺乏通用性、准确性和高成本,使得它们难以在自动化通用工作流程中实现。为了解决其中的一些问题,Duarte小组开发了一种计算工具autodE,它使用反应物和产物的SMILES字符串表示作为输入来自动表征反应途径。主要特点包括i)适用于有机和有机金属反应,ii)考虑最小和过渡态的构象采样,iii)与几个公共电子结构理论软件包的兼容性。然而,目前,它受到与电子结构方法和溶剂描述相关的成本的限制,这阻碍了它在溶液中常规探索复杂催化过程和反应的广泛应用。这部分是由于溶剂效应的描述,这在预测化学反应性中至关重要,因为溶剂效应可以偏向给定构象或反应途径的偏好。溶剂效应通常隐含地建模与连续的方法,捕捉批量极化效应,但是,它们不能描述特定的溶质-溶剂的相互作用,这是至关重要的描述带电物种。在这些情况下,可能需要显式溶剂化来实现期望的预测准确度。该项目的主要目标是引入简化的计算策略来研究溶液中的化学反应性,并使用这些信息来指导反应优化和催化剂设计。该项目与阿斯利康合作,旨在利用最先进的计算工具和预测机器学习(ML)模型来预测和预测溶液中具有挑战性的反应。更具体地说,显式溶剂化将被引入到autodE结合ML潜力的有效采样和二次字符串方法来识别过渡态。开发的实施方案将用于路线设计和开发,并应用于有机催化和金属催化反应中催化剂和底物的优化。从这个项目中产生的计算工具将是通用的,广泛适用于不同的反应类别和系统,这将加速在广泛的化学过程中识别催化剂和最佳反应条件。此外,该项目的成果将有助于预测合成,催化,过程化学,计算和理论化学以及软件开发等领域的学术和工业研究。该项目属于EPSRC物理科学研究领域的福尔斯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
- 批准号:51079080
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
非编码RNA与蛋白质相互作用预测算法的研究
- 批准号:31000586
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
- 批准号:
10757140 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Epigenetic Dysregulation, Genetic Mutations, And Outcomes Of Lymphoid Malignancies Related To Agent Orange And Burn Pit Exposures Compared To Unexposed Case-Matched Controls
与未暴露的病例匹配对照相比,与橙剂和烧伤坑暴露相关的表观遗传失调、基因突变和淋巴恶性肿瘤的结果
- 批准号:
10587826 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Innovative prediction method for for chemical-induced developmental toxicity using causal inference through machine learning.
通过机器学习进行因果推理来预测化学品引起的发育毒性的创新方法。
- 批准号:
23H03555 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated exposome profiling to identify environmental risk factors of metabolic disease in mid- and late-life
综合暴露组分析可识别中晚年代谢疾病的环境危险因素
- 批准号:
10638457 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Supplement to Support the Development of a New Multiplexed Imaging Tool using Raman Spectroscopy for Breast Cancer
支持开发使用拉曼光谱治疗乳腺癌的新型多重成像工具的补充材料
- 批准号:
10839117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Air Pollution, Multidimensional Behavior, and Neuroimaging in Children with Neurodevelopmental Disorders
空气污染、多维行为和神经发育障碍儿童的神经影像学
- 批准号:
10644622 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A liver-on-chip platform to evaluate panels of clinically relevant gene variants for screening of xenobiotic compounds
用于评估临床相关基因变异组以筛选异生化合物的肝脏芯片平台
- 批准号:
10738215 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Spatiotemporal Atlas of Cellular Networks and Ultrastructural States Mediating the Progression and Resolution of Pulmonary Fibrosis
介导肺纤维化进展和消退的细胞网络和超微结构状态的时空图谱
- 批准号:
10600647 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
- 批准号:
10742205 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Prenatal endocrine-disrupting chemicals, pandemic-related stress and social risk in mothers and infants
母亲和婴儿的产前内分泌干扰化学物质、流行病相关压力和社会风险
- 批准号:
10573800 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




