Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
基本信息
- 批准号:6983597
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Langerhans&apos cellbiophysicscalcium channelcalcium fluxcell cell interactioncomputer program /softwareelectrophysiologygonadotropin releasing factorinsulinintracellularmathematical modelmembrane activitymembrane channelsmembrane modelmembrane potentialsmodel design /developmentpancreatic islet functionpancreatic isletssecretionsynapses
项目摘要
We use mathematical models to study the mechanisms of oscillatory electrical activity arising from ion channels in cell membranes and modulated by intracellular chemical processes. We are interested in both the behavior of single cells and the ways in which cells communicate and modify each other's behavior. Our main application has been to the biophysical basis of insulin secretion in pancreatic beta-cells. We have examined bursting oscillations in membrane potential and the role of electrical coupling between cells in the islet of Langerhans. Long term goals are to understand how the membrane dynamics interact with intracellular events to regulate secretion. We also compare, contrast, and generalize to other secretory cells and neurons, including GnRH-secreting hypothalamic neurons, pituitary somatotrophs, and fast neurotransmitter secretion at nerve terminals.
Our primary tool is the numerical solution of ordinary and partial differential equations. We use analytical, geometrical, graphical, and numerical techniques from the mathematical theory of dynamical systems to help construct and interpret the models. Perturbation techniques are used to get analytical results in special cases. We study both detailed biophysical models and simplified models which are more amenable to analysis. Such an approach aids the isolation of the essential or minimal mechanisms underlying phenomena, the search for general principles, and the application of concepts and analogies from other fields. Another role for our group is to mediate between the mathematical and biological disciplines. This includes disseminating the insights of mathematical work to biologists in accessible language and alerting mathematicians and other theoreticians to new and challenging problems arising from biological issues.
Recent work on this project includes:
1. (Role of the Endoplasmic Reticulum in Shaping Calcium Oscillations)
We have shown that adding a simple ER with only linear uptake and release mechanisms is sufficient to account for most features of cytosolic Ca2+ kinetics, provided the ER is much slower than cytosolic Ca2+, but not too slow. It must be able to fill and empty substantially during a burst cycle (tens to hundreds of seconds) in order to impart its slow kinetics to cytosolic Ca2+.
Inclusion of ER dynamics is sufficient to account for the increase of burst frequency in the presence of the insulin-secretion potentiator acetylcholine. Inclusion of nucleotide ratio dynamics permits in addition simulation of the triphasic transient response of islets to a step of glucose (latency, first phase spiking, and steady-state oscillation). See Bertram and Sherman (2004).
Not all additional mechanisms are helpful, however. We have found that including active calcium-induced calcium release (CICR) results in an ER that does not fill and empty in response to cytosolic calcium oscillations and fails to account for the increase in the amplitude of cytosolic calcium transients when ER uptake is blocked. A paper is in press.
2. (Electrical Coupling and Emergent Oscillations in Pancreatic Islets) We have extended our work on how the heterogeneous properties of islet beta-cells contributes to the collective behavior of intact islets. Using the phantom bursting model mentioned above (Bertram and Sherman, 2004), we have shown that coupling fast and slow cells can produce the intermediate period electrical oscillations typically seen in islets. This is not very surprising, but we found further that a bimodal distribution of single-cell periods could be generated with a unimodal distribution of channel conductances. It is also possible to construct islets consisting of only fast cells or only slow cells that exhibit intermediate period oscillations when coupled. See Zimliki et al (2004).
3. (Combined Electrical and Metabolic Oscillations in Pancreatic Islets) Although electrical osscillations in pancreatic islets are important for understanding many phenomena, their properties are at variance with observations of pulsatile insulin secretion in vivo. We have proposed that this can be explained by the modulation of the electrical oscillations by metabolic (glycolytic) oscillations. In particular, this combination can account for the observations of compound oscillations (bursts of bursts) that have been observed in membrane potential, cytosolic calcium, and metabolic variables such as intra-islet oxygen and glucose and mitochondrial membrane potential. We suggest that the glycolytic oscillations maintain optimal timing to coordinate insulin secretion and insulin action while the electrical oscillations control the quantity of insulin secreted in each pulse. See Bertram et al (2004).
我们使用数学模型来研究由细胞膜离子通道引起并受细胞内化学过程调节的振荡电活动的机制。我们对单个细胞的行为以及细胞沟通和修改彼此行为的方式感兴趣。我们的主要应用是胰腺β细胞胰岛素分泌的生物物理基础。我们研究了膜电位的爆发振荡以及朗格汉斯岛细胞之间电耦合的作用。长期目标是了解膜动力学如何与细胞内事件相互作用以调节分泌。我们还比较、对比和推广其他分泌细胞和神经元,包括分泌 GnRH 的下丘脑神经元、垂体生长激素细胞和神经末梢的快速神经递质分泌。
我们的主要工具是常微分方程和偏微分方程的数值解。我们使用动力系统数学理论中的分析、几何、图形和数值技术来帮助构建和解释模型。扰动技术用于在特殊情况下获得分析结果。我们研究详细的生物物理模型和更易于分析的简化模型。这种方法有助于分离现象背后的基本或最小机制、寻找一般原理以及应用其他领域的概念和类比。我们小组的另一个角色是在数学和生物学科之间进行协调。这包括以易于理解的语言向生物学家传播数学工作的见解,并提醒数学家和其他理论家注意生物学问题引起的新的和具有挑战性的问题。
该项目最近的工作包括:
1.(内质网在塑造钙振荡中的作用)
我们已经证明,添加仅具有线性摄取和释放机制的简单 ER 足以解释细胞溶质 Ca2+ 动力学的大多数特征,前提是 ER 比细胞溶质 Ca2+ 慢得多,但不是太慢。它必须能够在爆发周期(数十至数百秒)内充分填充和排空,以便将其缓慢的动力学传递给胞质 Ca2+。
包含内质网动力学足以解释胰岛素分泌增强剂乙酰胆碱存在下爆发频率的增加。包含核苷酸比率动力学还允许模拟胰岛对葡萄糖步骤的三相瞬态响应(潜伏期、第一相尖峰和稳态振荡)。参见 Bertram 和 Sherman (2004)。
然而,并非所有附加机制都有帮助。我们发现,包括活性钙诱导的钙释放(CICR)会导致内质网不会响应细胞质钙振荡而填充和排空,并且无法解释当内质网摄取受阻时细胞质钙瞬变幅度的增加。一篇论文正在印刷中。
2.(胰岛中的电耦合和突发振荡)我们扩展了关于胰岛β细胞的异质特性如何影响完整胰岛的集体行为的工作。使用上面提到的幻影爆发模型(Bertram 和 Sherman,2004),我们已经证明快速和慢速细胞的耦合可以产生通常在胰岛中看到的中间周期电振荡。这并不奇怪,但我们进一步发现单细胞周期的双峰分布可以通过通道电导的单峰分布产生。还可以构建仅由快细胞或仅由慢细胞组成的胰岛,这些胰岛在耦合时表现出中间周期振荡。参见 Zimliki 等人 (2004)。
3.(胰岛中的电振荡和代谢振荡相结合)尽管胰岛中的电振荡对于理解许多现象很重要,但它们的特性与体内脉动胰岛素分泌的观察结果不一致。我们提出这可以通过代谢(糖酵解)振荡对电振荡的调节来解释。特别是,这种组合可以解释在膜电位、胞质钙和代谢变量(例如胰岛内氧和葡萄糖以及线粒体膜电位)中观察到的复合振荡(爆发的爆发)。我们建议糖酵解振荡保持最佳时机来协调胰岛素分泌和胰岛素作用,而电振荡控制每个脉冲中分泌的胰岛素数量。参见 Bertram 等人 (2004)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Stewart Sherman其他文献
Arthur Stewart Sherman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Stewart Sherman', 18)}}的其他基金
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
7151495 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
6673338 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
6532080 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
7334656 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6432053 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6289713 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6104983 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
全细胞疫苗Cell@MnO2的乳腺癌术后免疫响应监测与放射免疫治疗研究
- 批准号:QN25H220002
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体外环状DNA以cell-in-cell途径促进基因横向传递和扩增的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
GMFG/F-actin/cell adhesion 轴驱动 EHT 在造
血干细胞生成中的作用及机制研究
- 批准号:TGY24H080011
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于In-cell NMR策略对“舟楫之剂”桔梗中引经药效物质的快速发现研究
- 批准号:82305053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向Cell-Free网络的协同虚拟化与动态传输
- 批准号:62371367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Cell-in-cell促进曲妥珠单抗耐药乳腺癌细胞转移的作用与分子机制
- 批准号:82373069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于定点突变膜受体Cell-free合成生物色谱新方法的PDGFRβ抑制剂筛选和结合位点分析
- 批准号:82273886
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
FLRT3抑制异质性cell-in-cell结构形成机制及细胞免疫调节作用研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于Cell-SELEX 的磁珠富集技术与LAMP 联合构建的梅毒螺旋体核酸检测方法及其临床应用
- 批准号:2021JJ30609
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ECM remodeling and crosstalk with cell fate in zebrafish ligament regeneration
斑马鱼韧带再生中 ECM 重塑和细胞命运的串扰
- 批准号:
10748627 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
- 批准号:
10668694 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulation of Cell Cycle progression by the nuclear envelope
核膜对细胞周期进程的调节
- 批准号:
10659597 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Diversity Supplement for: Engineered Asymmetric Hydrogel for Muscle Stem Cell Polarity and Fate Specification
多样性补充:用于肌肉干细胞极性和命运规范的工程不对称水凝胶
- 批准号:
10807823 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Structural and Functional Studies of Cell-Adhesion Receptors
细胞粘附受体的结构和功能研究
- 批准号:
10557708 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Decoupling Hydrogel Stiffness and Diffusivity for Hematopoietic Stem Cell Culture and Differentiation
用于造血干细胞培养和分化的水凝胶刚度和扩散率的解耦
- 批准号:
10647478 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




