Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
基本信息
- 批准号:7151495
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Langerhans&apos cellbiophysicscalcium channelcalcium fluxcell cell interactioncomputer program /softwareelectrophysiologyendoplasmic reticulumgonadotropin releasing factorhuman tissueinsulinmathematical modelmembrane activitymembrane channelsmembrane modelmembrane potentialsmodel design /developmentpancreatic islet functionpancreatic isletssynapses
项目摘要
We use mathematical models to study the mechanisms of oscillatory electrical activity arising from ion channels in cell membranes and modulated by intracellular chemical processes. We are interested in both the behavior of single cells and the ways in which cells communicate and modify each other's behavior. Our main application has been to the biophysical basis of insulin secretion in pancreatic beta-cells. We have examined bursting oscillations in membrane potential and the role of electrical coupling between cells in the islet of Langerhans. Long term goals are to understand how the membrane dynamics interact with intracellular events to regulate secretion. We also compare, contrast, and generalize to other secretory cells and neurons, including GnRH-secreting hypothalamic neurons, pituitary somatotrophs, and fast neurotransmitter secretion at nerve terminals.
Our primary tool is the numerical solution of ordinary and partial differential equations. We use analytical, geometrical, graphical, and numerical techniques from the mathematical theory of dynamical systems to help construct and interpret the models. Perturbation techniques are used to get approximate analytical results in special cases. We study both detailed biophysical models and simplified models which are more amenable to analysis. Such an approach aids in the isolation of the essential or minimal mechanisms underlying phenomena, the search for general principles, and the application of concepts and analogies from other fields. Another role for our group is to mediate between the mathematical and biological disciplines. This includes disseminating the insights of mathematical work to biologists in accessible language and alerting mathematicians and other theoreticians to new and challenging problems arising from biological issues.
Recent work on this project includes:
1. (Role of the Endoplasmic Reticulum in Shaping Calcium Oscillations)
In the 2004 report we described in detail how a passive ER with linear uptake and release mechanisms is sufficient to account for most of the observed features of beta-cell cytosolic calcium. Active, nonlinear processes, such as calcium-induced calcium release are not required, and in fact would lead to behavior of cytosolic calcium in contradiction with observations. Systematic observation of ER calcium in beta-cells or islets during cytosolic calcium oscillations are still lacking, but the model predicts that ER calcium will oscillate in parallel. See Bertram and Sherman (2004). A review of the roles of cytosolic and ER calcium is in press.
With the laboratory of Indu Ambudkar (NIDCR) we have developed a model of regulation of calcium entry by ER store content in a salivary gland cell line. The model proposes that entry is governed by a small sub-plasma-membrane compartment of the ER, rather than by the bulk ER. This is necessary to explain the triggering of entry by low doses of thapsigargin at early times when the bulk ER would not yet be substantially emptied. A paper is in review.
2. (Combined Electrical and Metabolic Oscillations in Pancreatic Islets) Although electrical oscillations in pancreatic islets are important for understanding many phenomena, their properties are at variance with observations of pulsatile insulin secretion in vivo. We have proposed that this can be explained by the modulation of the electrical oscillations by metabolic (glycolytic) oscillations. In particular, this combination can account for the observations of compound oscillations (bursts of bursts) that have been observed in membrane potential, cytosolic calcium, and metabolic variables such as intra-islet oxygen and glucose and mitochondrial membrane potential. We suggest that the glycolytic oscillations maintain optimal timing to coordinate insulin secretion and insulin action while the electrical oscillations control the quantity of insulin secreted in each puulse. See Bertram et al (2004). The model has provided an interpretation for experimental observations that islets from a given mouse are generally either fast or slow. We suggest that the slow mice have glycolytic oscillations, whereas the fast mice lack them. A paper is in press. A new framework for experimentation is opened up by these observations to test the model prediction and determine what factor(s) imprint the islets of a mouse.
We have used the combined glycolytic-ionic model above to address the issues of how beta-cells synchronize within islets and how islets synchronize within the pancreas when metabolic oscillations are present. We found that the indirect calcium sensitivity of glycolysis allows pure electrical coupling to synchronize even the metabolic oscillations within islets, although including diffusion of the glycolytic intermediate fructose bis-phosphate makes synchrony more secure.
For inter-islet synchrony, we found that the effect of insulin secretion into the common circulation is sufficient for synchrony by entraining the islets to a common glucose input. See Pedersen et al (2005). We have also found that diffusion of calcium or the glycolytic intermediate glucose-6-phosphate between beta-cells can kill the oscillations rather than enhancing synchrony. This may account for the observation that over-expression of gap junction proteins can convert slow (presumably glycolytically driven) calcium oscillations into fast (presumably purely ionic) calcium oscillations. Experimental tests of this prediction are planned and two papers are in preparation.
3. (Adipocyte cell size distributions) Using data supplied by the Cushman (NIDDK) and Reaven (Stanford) labs we have carried out a statistical analysis of cell size distributions in obese human subjects who were either insulin resistant or insulin sensitive. Detailed histograms of cell diameters for approximately 5000 cells per sample were obtained using a Coulter counter. The statistical analysis revealed that the insulin senstive patients had a greater proportion of large cells, the only subpopulation of cells capable of significant fat storage. This was surprising in view of evidence that large cells are more insulin resistant on a per cell basis than small cells, but is not in contradiction to those data. We suggest that insulin resistant subjects have a defect in adipocyte recruitment or differentiation that prevents them from matching fat storage capacity to demand. A paper is in preparation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arthur Stewart Sherman其他文献
Arthur Stewart Sherman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arthur Stewart Sherman', 18)}}的其他基金
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
6673338 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
6532080 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
7334656 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6289713 - 财政年份:
- 资助金额:
-- - 项目类别:
Electrical And Chemical Oscillations In Coupled Cell Sys
耦合电池系统中的电气和化学振荡
- 批准号:
6983597 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6432053 - 财政年份:
- 资助金额:
-- - 项目类别:
ELECTRICAL AND CHEMICAL OSCILLATIONS IN COUPLED CELL SYSTEMS
耦合电池系统中的电振荡和化学振荡
- 批准号:
6104983 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
全细胞疫苗Cell@MnO2的乳腺癌术后免疫响应监测与放射免疫治疗研究
- 批准号:QN25H220002
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
染色体外环状DNA以cell-in-cell途径促进基因横向传递和扩增的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
GMFG/F-actin/cell adhesion 轴驱动 EHT 在造
血干细胞生成中的作用及机制研究
- 批准号:TGY24H080011
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于In-cell NMR策略对“舟楫之剂”桔梗中引经药效物质的快速发现研究
- 批准号:82305053
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向Cell-Free网络的协同虚拟化与动态传输
- 批准号:62371367
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Cell-in-cell促进曲妥珠单抗耐药乳腺癌细胞转移的作用与分子机制
- 批准号:82373069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于定点突变膜受体Cell-free合成生物色谱新方法的PDGFRβ抑制剂筛选和结合位点分析
- 批准号:82273886
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
FLRT3抑制异质性cell-in-cell结构形成机制及细胞免疫调节作用研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于Cell-SELEX 的磁珠富集技术与LAMP 联合构建的梅毒螺旋体核酸检测方法及其临床应用
- 批准号:2021JJ30609
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ECM remodeling and crosstalk with cell fate in zebrafish ligament regeneration
斑马鱼韧带再生中 ECM 重塑和细胞命运的串扰
- 批准号:
10748627 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Modality-Agnostic Potency Assay Enabling Both Ex Vivo and In Vivo Genome Editing Therapeutics for Sickle Cell Disease
一种与模态无关的效力测定,可实现镰状细胞病的体外和体内基因组编辑治疗
- 批准号:
10668694 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Regulation of Cell Cycle progression by the nuclear envelope
核膜对细胞周期进程的调节
- 批准号:
10659597 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Diversity Supplement for: Engineered Asymmetric Hydrogel for Muscle Stem Cell Polarity and Fate Specification
多样性补充:用于肌肉干细胞极性和命运规范的工程不对称水凝胶
- 批准号:
10807823 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Structural and Functional Studies of Cell-Adhesion Receptors
细胞粘附受体的结构和功能研究
- 批准号:
10557708 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Decoding cortical Notch signaling and morphogenic instruction at cell-cell interfaces
解码细胞-细胞界面的皮质Notch信号传导和形态发生指令
- 批准号:
10714471 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




