Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
基本信息
- 批准号:2611263
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Combinatorics is the area of mathematics that is concerned with the relationship between the size of mathematical structures, and their other (geometric/structural) properties. It is mainly concerned with discrete mathematical objects, such as graphs and hypergraphs. It has very close links with Theoretical Computer Science and Discrete Analysis; it also hasgrowing connections to Algebra, Geometry and Number Theory.A classical example of a problem in Combinatorics is to determine the maximum possible number of edges in an n-vertex graph with no triangle; this problem was solved by Mantel over a century ago, but the analogous problem where one replaces a triangle with a cycle of length eight, remains open to this day. Most of the analogous problems for hypergraphs,also remain completely open.There has been much exciting progress in Combinatorics in recent years, utilising techniques both from within Combinatorics itself, and also from other areas of mathematics such as Algebra, Analysis and Probability Theory. This PhD project involves gaining familiarity with research-level techniques in Combinatorics (including those utilising algebraic,analytic and probabilistic methods), and simultaneously tackling some unsolved problems in Combinatorics.One area of investigation in the project is that of Erdos-Ko-Rado type problems. These ask for the largest possible size of a family of objects in which any two of the objects `agree' in some way. Recently, several Erdos-Ko-Rado type problems have been tackled successfully using techniques from Algebra and Analysis. Many, however, remain unsolved. For example, a question of Sos: how many subsets of (1, 2, ..., n) can you take, such that any two of the subsets share an arithmetic progression of length 3? Virtually nothing is known about this question. Another area of investigation is that of isoperimetric inequalities. Isoperimetric problems are classical objects of study in mathematics. In general, they ask for the smallest possible `boundary' of an object of a certain `size'. Perhaps the oldest is the isoperimetric problem in the plane: among all subsets of the plane of area 1, which has the smallest boundary?The answer was `known' to the ancient Greeks, but it was not until the 19th century that a rigorous proof was given. In the last fifty years, there has been a great deal of interest in `discrete isoperimetric inequalities'. These deal with discrete notions of boundary in graphs. They have important applications in computer science and information theory. Onevery natural unsolved problem in this area is the isoperimetric problem for r-element sets, popularised by Bollobas and Leader; there areAbstract(no more than 4,000 characters including spaces, clearly explain which EPSRC research area the project relates to - for more info see overleaf) Combinatorics is the area of mathematics that is concerned with the relationship between the size of mathematical structures, and their other (geometric/structural) properties. It is mainly concerned with discrete mathematical objects, such as graphs and hypergraphs. It has very close links with Theoretical Computer Science and Discrete Analysis; it also hasgrowing connections to Algebra, Geometry and Number Theory.A classical example of a problem in Combinatorics is to determine the maximum possible number of edges in an n-vertex graph with no triangle; this problem was solved by Mantel over a century ago, but the analogous problem where one replaces a triangle with a cycle of length eight, remains open to this day. Most of the analogous problems for hypergraphs,also remain completely open.There has been much exciting progress in Combinatorics in recent years, utilising techniques both from within Combinatorics itself, and also
组合数学(Combinatorics)是数学领域,关注数学结构的大小与其其他(几何/结构)属性之间的关系。它主要涉及离散的数学对象,如图和超图。它与理论计算机科学和离散分析有着非常密切的联系;它与代数、几何和数论也有着越来越多的联系。组合数学中的一个经典问题是确定一个没有三角形的n顶点图中的最大可能边数;这个问题在世纪前由Mantel解决,但是类似的问题,其中用长度为8的循环代替三角形,一直开放到今天。超图的大多数类似问题也仍然完全开放。近年来,组合数学取得了令人兴奋的进展,利用了组合数学本身以及其他数学领域(如代数,分析和概率论)的技术。该博士项目涉及熟悉组合数学的研究水平技术(包括那些利用代数,分析和概率方法),并同时解决组合数学中一些未解决的问题。该项目的一个调查领域是Erdos-Ko-Rado类型的问题。这些要求一个对象族的最大可能的大小,其中任何两个对象在某种程度上“同意”。最近,几个Erdos-Ko-Rado类型的问题已经成功地解决了使用代数和分析的技术。然而,许多问题仍未解决。例如,Sos的问题:(1,2,.,n)你能取,使得任何两个子集共享一个长度为3的算术级数吗?实际上,对这个问题一无所知。另一个研究领域是等周不等式。等周问题是数学中的经典研究对象。一般来说,它们要求某一“大小”物体的尽可能小的“边界”。也许最古老的是平面上的等周问题:在面积为1的平面的所有子集中,哪一个具有最小的边界?古希腊人“知道”这个问题的答案,但直到世纪才给出了严格的证明。在过去的50年里,人们对离散等周不等式产生了极大的兴趣。这些涉及图中边界的离散概念。它们在计算机科学和信息理论中有重要的应用。一个很自然的未解决的问题,在这方面是等周问题的r-元素集,推广的Bollobas和领导人;有抽象(不超过4,000个字符,包括空格,清楚地解释该项目涉及的EPSRC研究领域-更多信息请参见背面)组合数学是数学领域,涉及数学结构的大小之间的关系,以及它们的其他(几何/结构)性质。它主要涉及离散的数学对象,如图和超图。它与理论计算机科学和离散分析有着非常密切的联系;它与代数、几何和数论也有着越来越多的联系。组合数学中的一个经典问题是确定一个没有三角形的n顶点图中的最大可能边数;这个问题在世纪前由Mantel解决,但是类似的问题是用长度为8的圈代替三角形,一直开放到今天。超图的大多数类似问题也仍然是完全开放的。近年来,组合数学有了许多令人兴奋的进展,既利用了组合数学本身的技术,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
毛茛科产二萜生物碱性状的发生与创新:基于贝壳杉烯氧化酶基因(KO)的功能歧化
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
载姜黄素/KO143的纳米粒用于逆转三阴性乳腺癌耐药的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
肠道菌群代谢调控异氟烷暴露增强Fmr1-KO小鼠自闭症遗传易感性的作用及机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AMPK/mTOR/ULK-1通路调控mTOR-KO小鼠软骨细胞自噬及龟鹿二仙胶的干预机制研究
- 批准号:81973880
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
CRISPR-Cas 更正DJ-1突变基因并诱导多巴胺能神经元细胞移植DJ-1 KO大鼠PD模型研究
- 批准号:81870995
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
高能重离子同步加速器中,利用RF-KO获得高均匀度慢引出束的方法研究
- 批准号:11405236
- 批准年份:2014
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
孤独症动物模型(Fmr1 KO mice)脑功能网络的时空特性研究
- 批准号:31171025
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
高脂食物诱导SR-BI KO/apoER61h/h小鼠动脉粥样硬化和冠心病的发生、发展和死亡的进一步拓展及相关机理研究
- 批准号:81070235
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
相似海外基金
LEAPS MPS: The Erdos-Ko-Rado Property of Well-Covered Graphs
LEAPS MPS:良好覆盖图的 Erdos-Ko-Rado 性质
- 批准号:
2213394 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Erdos-Ko-Rado type problems, Isoperimetric inequalities, and other topics in Combinatorics.
Erdos-Ko-Rado 类型问题、等周不等式以及组合学中的其他主题。
- 批准号:
2614845 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Towards a complete Erdos-Ko-Rado theorem on the weak Bruhat lattice
弱 Bruhat 格子上的完整 Erdos-Ko-Rado 定理
- 批准号:
551141-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Algebraic Graph Theory and Erdos-Ko-Rado Theorems
代数图论和 Erdos-Ko-Rado 定理
- 批准号:
RGPIN-2018-03952 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
An algebraic approach to the Erdos-Ko-Rado theorem
Erdos-Ko-Rado 定理的代数方法
- 批准号:
341214-2013 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
An algebraic approach to the Erdos-Ko-Rado theorem
Erdos-Ko-Rado 定理的代数方法
- 批准号:
341214-2013 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual