Limit theorems for Pólya urns with initial composition tending to infinity with time
初始成分随时间趋于无穷大的波利亚瓮的极限定理
基本信息
- 批准号:2646038
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A Pólya urn is a classical discrete-time stochastic process that describes the contents of an urn that contains balls ofdifferent colours. At each time step, a ball is chosen uniformly at random in the urn, and replaced into the urntogether with a set of new balls whose number and colours depend on the colour of the selected ball and on areplacement rule, which is encoded in a matrix R. The cases of R being either the identity matrix or irreducible arewell-studied in the literature and limiting theorems show how the composition of the urn behaves when time goes toinfinity. The irreducible case is classical and dates by to some work by Markov in 1906 and has been widely studiedsince then. The irreducible case is more recent, with landmark papers by Athreya and Karlin (1968), and Janson(2004).In the case of the identity matrix, Borovkov recently proved limiting theorems for the composition of the urn when thenumber of initial balls goes to infinity together with time (see arXiv:1912.09665). Borovkov's results shows theexistence of a transition between different behaviours, depending on the scaling of the two factors (time and initialnumber of balls in the urn).This PhD project aims at proving analogous results for the case when the replacement matrix is irreducible. Becausethe irreducible and the identity case have drastically different behaviour in the classical case when the initial numberof balls in the urn is fixed, we expect the results of this PhD to be drastically different from Borovkov's. The methodsof proof will also be different from Borovkov's: we believe that they will rely on generalising the methods used in theclassical case by Athreya and Karlin (1968), and more recently Janson (2004).As a first step towards this goal, Chris will start by looking at the simpler ``balanced'' case when the total number inthe urn at all times is deterministic. This case is classical in the literature; we hope that its analysis will give insightinto t he more general non-balanced case.After solving this first question, Chris will look at the case when the number of colours (and not only the number ofinitial balls) goes to infinity with time
一个波利亚瓮是一个经典的离散时间随机过程,它描述了一个包含不同颜色的球的瓮的内容。在每个时间步,在瓮中随机均匀地选择一个球,并将其与一组新球一起替换到瓮中,这些新球的数量和颜色取决于所选球的颜色和替换规则,该规则被编码在矩阵R中。R是单位矩阵或不可约矩阵的情况在文献中得到了很好的研究,极限定理表明当时间趋于无穷大时,瓮的组成是如何表现的。不可约的情况是经典的,可以追溯到马尔可夫在1906年的一些工作,并已被广泛研究。不可约的情况是最近的,由Athreya和Karlin(1968)和Janson(2004)发表了里程碑式的论文。在单位矩阵的情况下,Borovkov最近证明了当初始球的数量随时间一起趋于无穷大时瓮的合成的极限定理(参见arXiv:1912.09665)。Borovkov的结果显示了不同行为之间的过渡的存在,这取决于两个因素的缩放(时间和瓮中球的初始数量)。这个博士项目旨在证明当替换矩阵不可约时的类似结果。由于不可约和身份的情况下,有显着不同的行为在经典的情况下,当最初numberof球在瓮是固定的,我们希望这个博士的结果是显着不同的Borovkov的。证明的方法也将不同于Borovkov的:我们相信他们将依赖于推广Athreya和Karlin(1968)以及最近的Janson(2004)在经典情况下使用的方法。作为实现这一目标的第一步,Chris将从更简单的“平衡”情况开始,即瓮中的总数在任何时候都是确定的。这个例子在文献中是经典的;我们希望它的分析能让我们深入了解更一般的非平衡情况。在解决了第一个问题之后,克里斯将研究颜色的数量(而不仅仅是有限个球的数量)随时间趋于无穷大的情况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: KKM-Type Theorems for Piercing Numbers, Mass Partition, and Fair Division
职业:刺穿数、质量划分和公平除法的 KKM 型定理
- 批准号:
2336239 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Limit Theorems and Structural Properties of Stochastic Models
随机模型的极限定理和结构性质
- 批准号:
2889380 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
- 批准号:
23K12978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combinatorics of Sharing Theorems, Stratifications, Bruhat Theory and Shimura Varieties
共享定理、分层、Bruhat 理论和 Shimura 簇的组合
- 批准号:
2247382 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
New developments of limit theorems for random walks
随机游走极限定理的新发展
- 批准号:
23K12986 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Empirical Tests of the Fundamental Theorems of Evolution and Natural Selection
职业:进化和自然选择基本定理的实证检验
- 批准号:
2240063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Positivity and vanishing theorems of direct image of relative canonical bundle
相关正则丛直像的正定理和消失定理
- 批准号:
23KJ0673 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows