Tense Solid Oxide Cells - Boosting Clean Energy Conversion through Nanoscale Strain
张力固体氧化物电池——通过纳米级应变促进清洁能源转换
基本信息
- 批准号:2647367
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Successful transition from a fossil fuel based economy to a net-zero-emissions one based on renewables critically depends on the ability to store renewable energy and release it on demand. Solid oxide cells (SOCs) are such a core technology that can reversibly store renewable electricity into fuels suitable for long-range transportation, aviation and large-scale energy storage. Most importantly, SOCs can be used to produce clean power from fuels such as hydrogen (fuel cell mode), or, when operated in reverse, to convert power into hydrogen, or even into other synthetic fuel precursors by utilizing carbon dioxide (electrolysis mode).As SOCs become increasingly more used, they also need to operate more efficiently and be more cost-effective and scalable. Since SOCs are built based on materials that combine good electronic and ionic conductivity with catalytic activity, advances in SOC technology have largely been driven by the quest to identify durable materials with increasingly higher conductivities. Typically this has been achieved by changing the crystal structure and chemistry of the materials. Alternative approaches based on physical, rather than chemical alterations are hugely promising, but require complex equipment to realize and are not particularly scalable. A key example is strain, or the 'tensing' of material's crystal structure which is introduced by depositing the material on a substrate with different crystal structure dimensions, thus artificially expanding or contracting the unit cell. Strain can be a remarkably powerful tool to tune materials and boost their performance: ~2% of expansive strain creates additional free space for ions to diffuse, boosting ionic conductivity by 2-3 fold, which is equivalent to 20% mol doping4, compressive strain brings atoms together, increasing orbital overlap and creating 'highways' for electron transport, thus increasing electronic conductivity and finally lowers useful conduction temperatures preventing degradation. In spite of these advantages, the application of strain and materials 'tensing' is limited to the production method described above and thus to thin films, which are two-dimensional systems (2D). For many applications and devices, three-dimensional (3D) structures are routinely required.This PhD investigates a new approach to unlock strain within materials, in 3D, by nucleating 'a cloud' of nanoparticles within them, at nanoscale proximity of each other, creating 3D-'tense' materials and energy conversion devices. The project will use state of the art facilities to measure electronic and ionic transport properties, prepare and characterize materials and test them for power generation from hydrogen (power production), hydrogen production from steam (energy storage), as well as carbon dioxide and steam co-electrolysis to syngas, a key synthetic fuel/chemicals precursor (power-to-chemicals) as well as benchmark against equivalent state-of-the-art systems.In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student's skills, networks and career prospects.
从基于化石燃料的经济向基于可再生能源的净零排放经济的成功转型,关键取决于储存可再生能源并按需释放的能力。固体氧化物电池(SOC)就是这样一种核心技术,它可以将可再生电力可逆地储存成适合远程运输、航空和大规模储能的燃料。最重要的是,SOC可用于从氢等燃料中生产清洁电力(燃料电池模式),或者在反向运行时,通过利用二氧化碳将电力转化为氢,甚至转化为其他合成燃料前体(电解模式)。随着SOC的使用越来越多,它们也需要更高效地运行,更具成本效益和可扩展性。由于SOC是基于将良好的电子和离子导电性与催化活性结合的联合收割机材料构建的,因此SOC技术的进步主要是由寻求识别具有越来越高的导电性的耐用材料所驱动的。通常,这是通过改变材料的晶体结构和化学性质来实现的。基于物理而不是化学改变的替代方法是非常有前途的,但需要复杂的设备来实现,并且不是特别可扩展。一个关键的例子是应变,或材料的晶体结构的“张紧”,这是通过将材料沉积在具有不同晶体结构尺寸的衬底上而引入的,从而人为地使单位晶胞膨胀或收缩。应变可以是一个非常强大的工具来调整材料并提高其性能:~2%的膨胀应变为离子扩散创造了额外的自由空间,将离子电导率提高了2-3倍,相当于20%mol掺杂4,压缩应变将原子聚集在一起,增加了轨道重叠并为电子传输创造了“高速公路”,从而增加电子传导性,并最终降低有用的传导温度,防止退化。尽管有这些优点,但应变和材料“张紧”的应用限于上述生产方法,因此限于二维系统(2D)的薄膜。对于许多应用和设备,通常需要三维(3D)结构。这个博士研究了一种新的方法来释放材料中的应变,在3D中,通过在它们内部成核“云”的纳米颗粒,在纳米尺度上彼此接近,创造3D“紧张”材料和能量转换设备。该项目将使用最先进的设施来测量电子和离子传输特性,制备和表征材料,并测试它们用于氢发电(发电)、蒸汽制氢(能量储存),以及二氧化碳和蒸汽共电解成合成气,一种关键的合成燃料/化学品前体(电力到化学品)以及与同等最先进系统的基准。除了进行尖端研究,学生还注册了研究人员发展研究生证书(PGCert),这是一个补充资格,发展学生的技能,网络和职业前景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
- 批准号:
2336465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Optimized Up-scaled Technology for Next Generation Solid Oxide Electrolysis
下一代固体氧化物电解的优化放大技术
- 批准号:
10063108 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded
Multiscale modeling of electrochemical reactions in solid oxide cell electrodes
固体氧化物电池电极电化学反应的多尺度建模
- 批准号:
23K03707 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solid Oxide Electrolysis Cells with Novel Perovskite-based Cathode
具有新型钙钛矿阴极的固体氧化物电解池
- 批准号:
LP210301397 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
Virtual Power Plant using Photovoltaics, Solid Oxide Fuel Cells and Storage Batteries for Primary Control Reserve
使用光伏、固体氧化物燃料电池和蓄电池作为主控制储备的虚拟发电厂
- 批准号:
23K19126 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Design of proton-conducting solid oxide electrolysis cells and electrochemical reactors for ammonia electrosynthesis systems
用于氨电合成系统的质子传导固体氧化物电解槽和电化学反应器的设计
- 批准号:
22KJ0807 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
High Durability Solid Oxide Electrolyser Stacks with Enhanced Coated Interconnects and Metal Ion Infiltrated Electrodes - HiDroConnect
具有增强涂层互连和金属离子渗透电极的高耐用性固体氧化物电解槽堆栈 - HiDroConnect
- 批准号:
10080289 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Rapid Assessment of Solid Oxide Fuel Cells Using Machine Learning
使用机器学习快速评估固体氧化物燃料电池
- 批准号:
23K03691 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003597/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003694/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant