High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
基本信息
- 批准号:EP/W003597/1
- 负责人:
- 金额:$ 92.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The production, storage, distribution and conversion of hydrogen is a rapidly emerging candidate to help decarbonise the economy. Here we focus on its role to support the integration of offshore renewable energy (ORE), a topic of increasing importance to the UK given the falling costs of offshore wind generation (with prices expected to drop to 25% of 2017 by 2023) and Government ambition. Indeed, the latest BEIS scenarios include more than 120 GW of offshore wind, and even up to 233GW in some scenarios. This brings with it significant challenges to the electricity infrastructure in terms of our ability to on-shore and integrate these variable energy flows, across a wide range of timeframes. Current ORE plants composed of fixed offshore wind structures are sited relatively close to land in shallow water and use systems of offshore cables and substations to transform the electricity produced, transmit it to the shore and connect to the grid. However, in order to exploit the full renewable energy potential and requirements for the 2050 net zero target, offshore wind farms will need to be sited further offshore and in deeper waters. This brings possibilities into consideration in which transporting the energy to shore via an alternative vector such as hydrogen could become the most attractive route. Hence we consider both on-shore and off-shore hydrogen generation.Not only can hydrogen be an effective means to integrate offshore wind, but it is also increasingly emerging as an attractive low carbon energy carrier to support the de-carbonisation of hard to address sectors such as industrial heat, chemicals, trucks, heavy duty vehicles, shipping, and trains. This is increasingly recognised globally, with significant national commitments to hydrogen in France, China, Canada, Japan, South Korea, Germany, Portugal, Australia and Spain in the last three years alone, along with the recent launch of a European hydrogen strategy, and the inclusion of hydrogen at scale in the November 2020 UK Government Green plan. Most of the focus of these national strategies is on the production of 'green' hydrogen using electrolysis, driven by renewable electricity. However, there remains interest in some countries, the UK being one example, in 'blue' hydrogen, which is hydrogen made from fossil fuels coupled with carbon capture and storage and hence a low carbon rather than zero carbon hydrogen. Today, 96% of hydrogen globally is produced from unabated fossil fuels, with 6% of global natural gas, and 2% of coal, consumption going to hydrogen production, primarily for petrochemicals, contributing around 830 million tonnes of carbon dioxide emissions per year. Currently green hydrogen is the most expensive form of hydrogen, with around 60-80% of the cost coming from the cost of the electrical power input. A critical factor that influences this is the efficiency of the electrolyser itself, and in turn the generator used to convert the green hydrogen back into power when needed. In this work we focus on the concept of a reversible electrolyser, which is a single machine that can both produce power in fuel cell mode, and produce hydrogen in electrolyser mode. Electrolysers and fuel cells fall into one of two categories: low-temperature (70-120C) and high temperature (600-850C). While low temperature electrolyser and fuel cell systems are already commercially available, their relatively low combined round-trip efficiency (around 40%) means that the reversible solid oxide cell (rSOC), which can operate at high temperatures (600-900C) is of growing interest. It can achieve an electrolyser efficiency of up to 95%, power generation efficiency of up to 65%, and hence a round-trip efficiency of around 60% at ambient pressure using products now approaching commercial availability. This project considers the development and application of this new technology to the case of ORE integration using hydrogen.
氢的生产、储存、分配和转化是帮助经济脱碳的一个迅速崛起的候选者。在这里,我们重点关注其支持海上可再生能源(ORE)整合的作用,鉴于海上风力发电成本下降(预计到2023年价格将降至2017年的25%)和政府的雄心,这一主题对英国越来越重要。事实上,最新的BEIS场景包括超过120 GW的海上风电,在某些场景中甚至高达233 GW。这给电力基础设施带来了重大挑战,即我们在岸上和整合这些可变能源流的能力,跨越广泛的时间范围。由固定的海上风力结构组成的当前ORE发电厂位于浅水中相对靠近陆地的位置,并且使用海上电缆和变电站的系统来转换所产生的电力,将其传输到海岸并连接到电网。然而,为了充分利用可再生能源的潜力和实现2050年净零目标的要求,海上风电场需要位于更远的海上和更深的沃茨。这就考虑到了通过替代载体如氢将能量输送到海岸可能成为最有吸引力的路线的可能性。因此,我们同时考虑陆上和海上制氢。氢气不仅可以成为整合海上风电的有效手段,而且越来越成为一种有吸引力的低碳能源载体,以支持工业热力、化学品、卡车、重型车辆、航运和火车等难以解决的行业的脱碳。这一点在全球范围内得到了越来越多的认可,仅在过去三年里,法国、中国、加拿大、日本、韩国、德国、葡萄牙、澳大利亚和西班牙就对氢能做出了重大国家承诺,沿着的是最近推出的欧洲氢能战略,并将大规模氢能纳入2020年11月英国政府的绿色计划。这些国家战略的大部分重点是在可再生电力的驱动下,利用电解生产“绿色”氢气。然而,在一些国家,英国是一个例子,在“蓝色”氢,这是从化石燃料加上碳捕获和储存,因此低碳而不是零碳氢制成的氢的兴趣。如今,全球96%的氢是由化石燃料生产的,全球6%的天然气和2%的煤炭消费用于制氢,主要用于石化产品,每年约排放8.3亿吨二氧化碳。目前,绿色氢是最昂贵的氢形式,大约60-80%的成本来自电力输入的成本。影响这一点的一个关键因素是电解槽本身的效率,以及在需要时用于将绿色氢气转换回电力的发电机的效率。在这项工作中,我们专注于可逆电解槽的概念,这是一个单一的机器,既可以在燃料电池模式下产生电力,并在电解槽模式下产生氢气。电解槽和燃料电池分为两类:低温(70- 120 ℃)和高温(600- 850 ℃)。虽然低温电解槽和燃料电池系统已经商业化,但它们相对较低的综合往返效率(约40%)意味着可以在高温(600- 900 ℃)下工作的可逆固体氧化物电池(rSOC)越来越受到关注。它可以实现高达95%的电解槽效率,高达65%的发电效率,因此在环境压力下使用目前接近商业可用性的产品的往返效率约为60%。该项目考虑了这种新技术的开发和应用,以使用氢的ORE集成为例。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Case study on the benefits and risks of green hydrogen production co-location at offshore wind farms
海上风电场绿色制氢的效益和风险案例研究
- DOI:10.1088/1742-6596/2265/4/042035
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:He W
- 通讯作者:He W
Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology
- DOI:10.1016/j.energy.2023.128430
- 发表时间:2023-07
- 期刊:
- 影响因子:9
- 作者:Vahid Shahbazbegian;Farnam Dehghani;M. Shafiyi;M. Shafie‐khah;H. Laaksonen;H. Ameli
- 通讯作者:Vahid Shahbazbegian;Farnam Dehghani;M. Shafiyi;M. Shafie‐khah;H. Laaksonen;H. Ameli
Resilience-oriented operation of microgrids in the presence of power-to-hydrogen systems
- DOI:10.1016/j.apenergy.2023.121429
- 发表时间:2023-10
- 期刊:
- 影响因子:11.2
- 作者:Vahid Shahbazbegian;M. Shafie‐khah;H. Laaksonen;G. Strbac;H. Ameli
- 通讯作者:Vahid Shahbazbegian;M. Shafie‐khah;H. Laaksonen;G. Strbac;H. Ameli
A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events
- DOI:10.3390/en16248099
- 发表时间:2023-12
- 期刊:
- 影响因子:3.2
- 作者:Masoumeh Sharifpour;M. Ameli;H. Ameli;Goran Strbac
- 通讯作者:Masoumeh Sharifpour;M. Ameli;H. Ameli;Goran Strbac
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nigel Brandon其他文献
Global Potatoes
全球土豆
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Niall Mac Dowell;Nixon Sunny;Nigel Brandon;H. Herzog;A. Ku;W. Maas;Andrea Ramirez;David M Reiner;Gaurav N. Sant;Nilay Shah - 通讯作者:
Nilay Shah
Engineering novel Nisub2-X/subCosubx/subP structures for high performance lithium-ion storage
- DOI:
10.1016/j.ensm.2022.03.007 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:20.200
- 作者:
Feng-Feng Li;Jian-Fei Gao;Zheng-Hua He;Nigel Brandon;Xiaohong Li;Ling-Bin Kong - 通讯作者:
Ling-Bin Kong
A hierarchical coupled optimization approach for dynamic simulation of building thermal environment and integrated planning of energy systems with supply and demand synergy
- DOI:
https://doi.org/10.1016/j.enconman.2022.115497 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Yuan Huang;Jiguang Kang;Liu Liu;Xiaoyi Zhong;Jian Lin;Shan Xie;Chao Meng;Yizhang Zeng;Nilay Shah;Nigel Brandon;Yingru Zhao - 通讯作者:
Yingru Zhao
University of Birmingham H2FC SUPERGEN
伯明翰大学 H2FC SUPERGEN
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Nigel Brandon;John Irvine;I. Metcalfe;Vladimir Molkov;Nilay Shah;Paul Dodds;Sheila Samsatli;Claire Thompson - 通讯作者:
Claire Thompson
Comment on “How green is blue hydrogen?”
评论“蓝氢有多绿?”
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Romano;C. Antonini;A. Bardow;V. Bertsch;Nigel Brandon;J. Brouwer;S. Campanari;L. Crema;P. Dodds;Stefania Gardarsdottir;M. Gazzani;Gert Jan Kramer;P. D. Lund;Niall Mac Dowell;E. Martelli;L. Mastropasqua;Russell C. McKenna;J. Monteiro;N. Paltrinieri;B. Pollet;Jeffrey Reed;T. J. Schmidt;J. Vente;D. Wiley - 通讯作者:
D. Wiley
Nigel Brandon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nigel Brandon', 18)}}的其他基金
Improved hydrogen-steam electrodes for solid oxide electrolysers
用于固体氧化物电解槽的改进氢蒸汽电极
- 批准号:
EP/W032589/1 - 财政年份:2022
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Hydrogen and Fuel Cells Hub Extension (H2FC SUPERGEN)
氢和燃料电池中心扩展 (H2FC SUPERGEN)
- 批准号:
EP/P024807/1 - 财政年份:2017
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
ISCF Wave 1: Translational Energy Storage Diagnostics (TRENDs)
ISCF 第一波:转化型储能诊断(趋势)
- 批准号:
EP/R020973/1 - 财政年份:2017
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Electrodes by Design - Microstructural Engineering of High Performance Electrodes for Solid Oxide Fuel Cells
电极设计 - 固体氧化物燃料电池高性能电极的微观结构工程
- 批准号:
EP/M014045/1 - 财政年份:2015
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Novel diagnostic tools and techniques for monitoring and control of SOFC stacks - understanding mechanical and structural change
用于监测和控制 SOFC 电堆的新型诊断工具和技术 - 了解机械和结构变化
- 批准号:
EP/M02346X/1 - 财政年份:2015
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Vanadium-Hydrogen flow battery for energy storage applications - a feasibility study
用于储能应用的钒氢液流电池——可行性研究
- 批准号:
EP/N508585/1 - 财政年份:2015
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Lower Cost and Longer Life Flow Batteries for Grid Scale Energy Storage
用于电网规模储能的成本更低、寿命更长的液流电池
- 批准号:
EP/L014289/1 - 财政年份:2014
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Hydrogen and Fuel Cell Supergen Hub
氢和燃料电池 Supergen Hub
- 批准号:
EP/J016454/1 - 财政年份:2012
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
Advanced battery condition monitoring in electric and hybrid vehicles
电动和混合动力汽车的先进电池状态监测
- 批准号:
EP/H05037X/1 - 财政年份:2010
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
相似国自然基金
温敏不育突变体(reversible male sterile)育性转换机制的研究
- 批准号:31770348
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
常微分方程中的一些问题
- 批准号:10671020
- 批准年份:2006
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 92.14万 - 项目类别:
Continuing Grant
CAREER: Unraveling Oxygen Electrode Delamination Mechanisms in Reversible Solid Oxide Cells for Robust Hydrogen Production
职业:揭示可逆固体氧化物电池中的氧电极分层机制,以实现稳健的氢气生产
- 批准号:
2336465 - 财政年份:2024
- 资助金额:
$ 92.14万 - 项目类别:
Standard Grant
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003694/1 - 财政年份:2022
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003686/1 - 财政年份:2022
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
High efficiency reversible solid oxide cells for the integration of offshore renewable energy using hydrogen
用于利用氢整合海上可再生能源的高效可逆固体氧化物电池
- 批准号:
EP/W003732/1 - 财政年份:2022
- 资助金额:
$ 92.14万 - 项目类别:
Research Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2045506 - 财政年份:2021
- 资助金额:
$ 92.14万 - 项目类别:
Continuing Grant
Degradation mechanism of solid oxide cell electrodes during reversible operation between fuel cell and electrolysis cell modes
燃料电池和电解池模式可逆运行期间固体氧化物电池电极的退化机制
- 批准号:
20K14663 - 财政年份:2020
- 资助金额:
$ 92.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond
EAGER:协作研究:用于先进锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层
- 批准号:
1748279 - 财政年份:2017
- 资助金额:
$ 92.14万 - 项目类别:
Standard Grant
EAGER: COLLABORATIVE RESEARCH: Reversible Solid Electrolyte Interface (SEI) Layers for Advanced Li-ion Batteries and Beyond
EAGER:协作研究:用于高级锂离子电池及其他电池的可逆固体电解质界面 (SEI) 层
- 批准号:
1748414 - 财政年份:2017
- 资助金额:
$ 92.14万 - 项目类别:
Standard Grant
High performance electrode materials for Reversible Solid Oxide Cells
用于可逆固体氧化物电池的高性能电极材料
- 批准号:
LP150100036 - 财政年份:2016
- 资助金额:
$ 92.14万 - 项目类别:
Linkage Projects