Machine learning augmented hierarchical tomographic image reconstruction of human organs
机器学习增强人体器官分层断层图像重建
基本信息
- 批准号:2720289
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
1) Brief description of the context of the research including potential impactImaging of organs at multiple resolutions can be extremely useful for understanding their function, especially if we can correlate cellular level information to whole organ processes. X-ray tomography is one of the methods that can be used to image at cellular level information; however, for a scan of an intact organ, normally this can only be achieved when the sample is small such as mouse organs (millimetres in size). For human organs, traditionally only biopsies could be scanned at such resolution. These biopsies distort, making correlation of the high-resolution results to low-resolution images challenging. A new technique, Hierarchical Phase-Contrast Tomography (HiP-CT) has been co-developed by UCL and ESRF, that can achieve cellular level resolution for volumes of interest (VOI) in an intact organ, starting from a full organ scan at lower resolution and hierarchically zoom into VOI at higher resolutions. This made it possible to have an intact organ and zoom in at any part to study its cellular level functions. (see human-organ-atlas.esrf.eu and mecheng.ucl.ac.uk/hip-ct)The tomographic images obtained by HiP-CT provide information across a range of scales. This project will apply and develop machine learning algorithms use the information from all scan resolutions to obtain better feature extraction than can be obtained from a single resolution. If successful, this could enable super-resolution imaging, with a final goal of informing clinical radiology. 2) Aims and ObjectivesThe aim of the project is to apply and develop machine learning algorithms to assist the reconstruction of high-resolution VOIs using data from lower resolution scan of the entire organ.The objectives are as follows:To investigate the use of generative model such as super resolution and generative adversarial nets to assist the reconstruction of VOI.To investigate the use of unsupervised learning algorithms to identify feature points to be used in the reconstruction process.To investigate the use of one model for all organ reconstructions or different models for different organs or organ groups.Considering the possible limitation on data variation, to investigate potential use of data from other sources to help identify key features via unsupervised learning algorithms.To compare the reconstruction results from the machine learning models with the reconstruction results obtained using the reference scan method.3) Novelty of Research MethodologyHiP-CT has only been recently developed, the only method to remove noise during the reconstruction process for extreme off-axis scans is via a reference scan and traditional denoising algorithms. The use of machine learning techniques to reconstruct utilising data from a lower resolution scan is yet to be investigated.4) Alignment to EPSRC's strategies and research areasThe project falls within EPSRC research area of engineering. The project aims to develop machine learning techniques to assist the reconstruction of HiP-CT scans, which helps towards the understanding of human organ structures. It aligns with the EPSRC's strategic priorities of artificial intelligence, digitisation and data, and also transforming health and healthcare.5) Any companies or collaborators involvedDr. Paul Tafforeau from the European Synchrotron Radiation Facility (ESRF).
1)研究背景的简要描述,包括潜在的影响以多种分辨率对器官进行成像,对于了解它们的功能非常有用,特别是如果我们可以将细胞水平的信息与整个器官过程相关联。X射线断层扫描是可用于在细胞水平信息成像的方法之一;然而,对于完整器官的扫描,通常这只能在样本较小时实现,例如小鼠器官(毫米大小)。对于人体器官,传统上只有活组织检查才能以这种分辨率扫描。这些活检扭曲,使高分辨率结果与低分辨率图像的相关性具有挑战性。UCL和ESRF共同开发了一种新技术,即分层相位对比断层扫描(HiP-CT),可以实现完整器官中感兴趣体积(VOI)的细胞水平分辨率,从较低分辨率的全器官扫描开始,分层放大到更高分辨率的VOI。这使得有可能有一个完整的器官,并放大任何部分来研究其细胞水平的功能。(see human-organ-atlas.esrf.eu和mecheng.ucl.ac.uk/hip-ct)通过HiP-CT获得的断层摄影图像提供了一系列尺度上的信息。该项目将应用和开发机器学习算法,使用来自所有扫描分辨率的信息,以获得比单一分辨率更好的特征提取。如果成功的话,这可以实现超分辨率成像,最终目标是为临床放射学提供信息。2)目的和目标本项目的目的是应用和开发机器学习算法,以帮助使用整个器官的低分辨率扫描数据重建高分辨率VOI。目标如下:研究使用生成模型(如超分辨率和生成对抗网络)来辅助VOI重建。研究使用无监督学习算法来识别重建过程中使用的特征点。研究使用一个模型进行所有器官重建或使用不同模型进行重建。不同的器官或器官组。考虑到数据变化的可能限制,研究来自其他来源的数据的潜在用途,以帮助通过无监督学习算法识别关键特征。将机器学习模型的重建结果与使用参考扫描方法获得的重建结果进行比较。3)研究方法的新奇HiP-CT最近才开发出来,在极端离轴扫描的重建过程中去除噪声的唯一方法是通过参考扫描和传统的去噪算法。使用机器学习技术来利用来自较低分辨率扫描的数据进行重建尚待研究。4)与EPSRC的战略和研究领域保持一致该项目福尔斯EPSRC的工程研究领域。该项目旨在开发机器学习技术,以帮助重建HiP-CT扫描,这有助于了解人体器官结构。它符合EPSRC的人工智能,数字化和数据的战略重点,也改变了健康和医疗保健。Paul Tafforeau,欧洲同步辐射实验室(ESRF)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Machine learning augmented molecular simulation pipelines for modelling allosteric modulation of protein function
机器学习增强分子模拟管道,用于模拟蛋白质功能的变构调节
- 批准号:
2871271 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Develop machine-learning-augmented URANS methods
开发机器学习增强的 URANS 方法
- 批准号:
2902286 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
REU Site: Undergraduate Research Experiences in Machine Learning, Analytics, and Augmented Reality for Smart and Connected Health
REU 网站:智能互联健康机器学习、分析和增强现实方面的本科生研究经验
- 批准号:
2150135 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Machine Learning Strategies for Augmented Health Informatics
增强健康信息学的机器学习策略
- 批准号:
RGPIN-2020-06841 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Machine Learning Augmented Discovery of AAV Capsids for Cell Type Specific Access into Human Neurons and Glia
机器学习增强了 AAV 衣壳的发现,用于特定细胞类型进入人类神经元和神经胶质细胞
- 批准号:
10512547 - 财政年份:2022
- 资助金额:
-- - 项目类别:
FMSG: Cyber: Cybermanufacturing of Wide-Bandgap Semiconductor Devices Enabled by Simulation Augmented Machine Learning
FMSG:网络:通过仿真增强机器学习实现宽带隙半导体器件的网络制造
- 批准号:
2134374 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Foundation for data-driven software maintenance and evolution augmented by machine learning
通过机器学习增强数据驱动的软件维护和发展的基础
- 批准号:
21KK0179 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Machine Learning Strategies for Augmented Health Informatics
增强健康信息学的机器学习策略
- 批准号:
RGPIN-2020-06841 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Application of Machine Learning, Augmented Reality Technologies to Living with Macular Disease
机器学习、增强现实技术在黄斑疾病中的应用
- 批准号:
2604425 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




