Machine learning and quantum theory of magnets for energy efficient and renewable energy technologies
用于节能和可再生能源技术的机器学习和磁体量子理论
基本信息
- 批准号:2729474
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project is closely connected to ongoing research being conducted in collaboration with HetSys partner Forschungszentrum Julich. The project will also enhance the collaboration which has just begun with materials scientists at Northeastern University in Boston in the USA on developing novel materials processing for magneto-functional materials. There will be opportunities for the student to visit both partner institutes.Magnetic materials are technologically indispensable - used in motors, generators, solid state cooling, electronic devices, data storage, medical treatment, toys etc. Although the effects of magnetism are easily understood on the macroscopic scale, it has its origins in the complex collective behaviour of the electronic glue, simultaneously binding the nuclei of the material together and generating magnetic moments. In this project we will identify atomistic, classical spin models by using machine learning tools on data from calculations of the fundamental quantum mechanics of the electrons. From their study we will discover ways to design new magnets with reduced amounts of critical elements such as rare earth metals. The work will relate directly to theoretical work and experimental measurements by International Partners.With the drive towards more energy efficient technologies, renewable energy supplies and further miniaturisation of devices, there is an urgent demand for stronger and cheaper magnetic materials. This project will be part of ongoing development of computational modelling to understand intrinsic magnetic properties, to refine design principles and to aid the search for new functional magnets. A magnetic material comprises a crystalline lattice of nuclei surrounded by a glue of septillions of interacting electrons. Moreover, the same electrons which underpin the magnetism of a material are also responsible for determining the arrangements of its atoms. The complexity of this electron fluid presents a fundamental challenge for theory and computational modelling - the magnetism it can lead to comes from composite spins coalescing around atomic sites as a result of the cooperative behaviour of many electrons. There are interactions between pairs of such classical spins and among clusters of them. In principle these multi-spin parameters can be determined from calculations of the fundamental quantum mechanics of the electrons. To date we have developed a cluster expansion of the free energy of the system in terms of the quantities which describe the average order of the spins around the atomic sites, i.e. local magnetic order parameters, and we can describe accurately many magnetic properties and how they vary with temperature, composition and applied fields.The extraction and investigation of an accurate model classical spin-Hamiltonian, however, from such ab initio data is a challenging task and it is at the heart of this project. To take the work to the next level and enable it to describe multicomponent magnetic materials for the design of new magnets with reduced levels of critical elements as well as materials with intriguing topological magnetic structures (skyrmions) we need to develop machine learning tools to determine the form of the free energy rather than our current ad hoc approach.This work will also enhance our modelling of how arrangements of atoms in multi-component alloys can be affected by the application of strain and magnetic fields and hence have an impact on novel materials processing being developed by collaborators.
该项目与HetSys合作伙伴Forschungszentrum Julich合作进行的正在进行的研究密切相关。该项目还将加强与美国波士顿东北大学材料科学家在开发磁功能材料的新材料加工方面刚刚开始的合作。学生将有机会参观这两个合作机构。磁性材料在技术上是不可或缺的-用于电动机,发电机,固态冷却,电子设备,数据存储,医疗,玩具等。虽然磁性的影响在宏观尺度上很容易理解,它起源于电子胶的复杂集体行为,同时将材料的原子核结合在一起并产生磁矩。在这个项目中,我们将通过使用机器学习工具来识别原子的经典自旋模型,这些工具来自电子基本量子力学的计算数据。从他们的研究中,我们将发现设计新磁铁的方法,减少稀土金属等关键元素的含量。这项工作将与国际合作伙伴的理论工作和实验测量直接相关。随着能源效率更高的技术、可再生能源供应和设备的进一步智能化,对更强大、更便宜的磁性材料的需求迫切。该项目将是正在进行的计算建模开发的一部分,以了解固有的磁性,完善设计原则,并帮助寻找新的功能磁体。磁性材料包括由数十亿个相互作用的电子组成的胶所包围的原子核的晶格。此外,支撑材料磁性的相同电子也负责决定其原子的排列。这种电子流体的复杂性对理论和计算建模提出了一个根本性的挑战-它可能导致的磁性来自于由于许多电子的合作行为而在原子位置周围聚结的复合自旋。在这些经典自旋对之间以及它们的簇之间存在相互作用。原则上,这些多自旋参数可以通过计算电子的基本量子力学来确定。到目前为止,我们已经发展了一个描述原子位置周围自旋的平均序的量,即局部磁序参数的系统自由能的簇展开,并且我们可以精确地描述许多磁性质以及它们如何随温度、成分和外加场而变化。从这种从头开始的数据是一项具有挑战性的任务,它是这个项目的核心。将工作提升到一个新的水平,使其能够描述多组分磁性材料,用于设计具有降低的关键元素水平的新磁体以及具有有趣的拓扑磁性结构的材料(skyrmions)我们需要开发机器学习工具来确定自由能的形式,而不是我们目前的特设方法。这项工作也将增强我们对多原子中原子排列的建模,成分合金可以受到应变和磁场的影响,因此对合作者正在开发的新材料加工产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Quantum Machine Learning for Financial Data Streams
金融数据流的量子机器学习
- 批准号:
10073285 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Feasibility Studies
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
- 批准号:
10083188 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small Business Research Initiative
Machine-learning quantum surrogate models to simulate energy transport across interfaces
机器学习量子替代模型来模拟跨界面的能量传输
- 批准号:
2886134 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
- 批准号:
2882984 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
- 批准号:
23K13008 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of an efficient method combining quantum chemistry and machine learning to evolve PCR technology and gene mutation analysis
开发一种结合量子化学和机器学习的有效方法来发展 PCR 技术和基因突变分析
- 批准号:
22KJ2450 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
- 批准号:
2886876 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Security-first Federated Quantum Machine Learning for Genomics
安全第一的基因组学联合量子机器学习
- 批准号:
10072286 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility Studies