NOVEL APPROACHES TO GENE PROFILING IN OVARIAN CANCER

卵巢癌基因分析的新方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): Epithelial ovarian cancer (EOC) is the most lethal of gynecologic malignancies. Advanced disease typically involves the upper abdomen and affects 70% of patients, associated with 5 year survival in the range of 10- 25% after treatment with surgery followed by chemotherapy. Early stage disease confined to the pelvis is associated with 5 year survival of greater than 90%, although the presence of high risk features still requires treatment with post-operative chemotherapy. Traditional clinical and molecular markers as stage, postoperative debulking status, p53 mutation, and BAX expression are reasonable but imperfect measures of outcome. This observation suggests that no single marker can serve as a surrogate for the complex genetic changes that are responsible for tumor growth and response to chemotherapy. In this regard, microarray gene profiling is a powerful technique that is capable of simultaneously assessing the expression of thousands of genes, although its clinical utility for patients with EOC remains to be determined. Using this technique, we have developed novel bioinformatics approaches to identify gene profiles in a training set that are highly prognostic of clinical outcome in EOC. In this grant, we will validate these data in a test set comprised of a large number of tumor samples from a separate institution, and we will also determine whether it is possible to streamline tumor profiling using RT-PCR and immunohistochemistry assays (Specific Aim 1). Furthermore, we challenge the generally accepted concept that accurate prognostic information can always be obtained from analysis of a static, pre-treatment tumor sample. Thus, in Specific Aim 2 we will obtain a dynamic assessment of gene expression in response to chemotherapy in vivo, based upon the accessibility of tumor cells from ascites immediately before as well as for several days after chemotherapy has begun. Finally, in Specific Aim 3 we will apply the micro-array technique to a study of patients with early stage disease, in an attempt to determine whether it is possible to identify only those patients who will derive the greatest benefit from post-operative chemotherapy. We anticipate that the ability to accurately identify predictive and prognostic factors in EOC will permit a more tailored approach to post-operative management for patients with this disease.
描述(由申请人提供):上皮性卵巢癌(EOC)是最致命的妇科恶性肿瘤。晚期疾病通常累及上腹部,影响70%的患者,手术后化疗治疗后的5年生存率为10- 25%。局限于骨盆的早期疾病与大于90%的5年生存率相关,尽管存在高风险特征仍然需要术后化疗治疗。传统的临床和分子标志物,如分期,术后减积状态,p53突变和BAX表达是合理的,但不完善的措施的结果。这一观察结果表明,没有单一的标记物可以作为负责肿瘤生长和对化疗反应的复杂遗传变化的替代品。在这方面,微阵列基因分析是一种强大的技术,能够同时评估数千个基因的表达,尽管其对EOC患者的临床效用仍有待确定。使用这种技术,我们已经开发了新的生物信息学方法,以确定基因谱的训练集,在EOC的临床结果是高度预后。在这项资助中,我们将在一个由来自一个单独机构的大量肿瘤样本组成的测试集中验证这些数据,我们还将确定是否有可能使用RT-PCR和免疫组化检测来简化肿瘤分析(具体目标1)。此外,我们挑战了普遍接受的概念,即准确的预后信息总是可以从静态的,治疗前的肿瘤样本的分析。因此,在特异性目标2中,我们将根据化疗开始前以及化疗开始后几天腹水中肿瘤细胞的可及性,获得体内对化疗反应的基因表达的动态评估。最后,在特定目标3中,我们将应用微阵列技术对早期疾病患者进行研究,以确定是否有可能仅识别那些从术后化疗中获益最大的患者。我们预计,准确识别EOC的预测和预后因素的能力将允许一个更有针对性的方法来治疗这种疾病的患者的术后管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOWIA A. LIBERMANN其他文献

TOWIA A. LIBERMANN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOWIA A. LIBERMANN', 18)}}的其他基金

Advancing the Understanding of Postoperative Delirium Mechanisms via Multi-Omics
通过多组学促进对术后谵妄机制的理解
  • 批准号:
    9402039
  • 财政年份:
    2016
  • 资助金额:
    $ 14.28万
  • 项目类别:
Advancing the Understanding of Postoperative Delirium Mechanisms via Multi-Omics
通过多组学促进对术后谵妄机制的理解
  • 批准号:
    9204773
  • 财政年份:
    2016
  • 资助金额:
    $ 14.28万
  • 项目类别:
Role of Axl in docetaxel resistance in prostate cancer
Axl 在前列腺癌多西紫杉醇耐药中的作用
  • 批准号:
    8880713
  • 财政年份:
    2015
  • 资助金额:
    $ 14.28万
  • 项目类别:
AD/ADRD and biological aging proteomic signatures in the etiopathology of delirium and its associated long-term cognitive decline
AD/ADRD 和生物衰老蛋白质组特征在谵妄病因及其相关长期认知衰退中的作用
  • 批准号:
    10585942
  • 财政年份:
    2015
  • 资助金额:
    $ 14.28万
  • 项目类别:
Novel treatment strategies for enhancing sunitinib response in renal cell cancer
增强肾细胞癌舒尼替尼反应的新治疗策略
  • 批准号:
    8524387
  • 财政年份:
    2013
  • 资助金额:
    $ 14.28万
  • 项目类别:
Novel treatment strategies for enhancing sunitinib response in renal cell cancer
增强肾细胞癌舒尼替尼反应的新治疗策略
  • 批准号:
    8651433
  • 财政年份:
    2013
  • 资助金额:
    $ 14.28万
  • 项目类别:
NOVEL APPROACHES TO GENE PROFILING IN OVARIAN CANCER
卵巢癌基因分析的新方法
  • 批准号:
    6870870
  • 财政年份:
    2005
  • 资助金额:
    $ 14.28万
  • 项目类别:
CORE-- GENOMIC AND BIONFORMATICS SUPPORT
核心——基因组学和生物信息学支持
  • 批准号:
    6946588
  • 财政年份:
    2004
  • 资助金额:
    $ 14.28万
  • 项目类别:
ROLE OF A NEW ETS FACTOR, PDEF, IN PROSTATE CANCER
新的 ETS 因素 PDEF 在前列腺癌中的作用
  • 批准号:
    6886322
  • 财政年份:
    2001
  • 资助金额:
    $ 14.28万
  • 项目类别:
Ese-1, a New Transcriptional Mediator of Inflammation
Ese-1,一种新的炎症转录介质
  • 批准号:
    6511364
  • 财政年份:
    2001
  • 资助金额:
    $ 14.28万
  • 项目类别:

相似海外基金

Urinary Phthalate Biomarker Concentrations and Breast and Prostate Cancer Risk in a National Cohort of Adults in Canada
加拿大全国成人队列中尿液邻苯二甲酸盐生物标志物浓度与乳腺癌和前列腺癌风险
  • 批准号:
    494953
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Operating Grants
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
  • 批准号:
    10719777
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
  • 批准号:
    10805177
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Prospective metabolomics investigation of gastric cancer risk in African Americans and European Whites with a low socioeconomic status
社会经济地位较低的非裔美国人和欧洲白人胃癌风险的前瞻性代谢组学调查
  • 批准号:
    10912190
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Developing diagnostics of patient-specific cancer risk and early-stage tumorigenesis
开发患者特异性癌症风险和早期肿瘤发生的诊断方法
  • 批准号:
    478999
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
    Operating Grants
Environmental Metal Exposures and Breast Cancer Risk: A Prospective Study of Nationally Representative Canadian Data
环境金属暴露与乳腺癌风险:加拿大全国代表性数据的前瞻性研究
  • 批准号:
    495159
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Mechanisms of tamoxifen-associated endometrial cancer risk
他莫昔芬相关子宫内膜癌风险的机制
  • 批准号:
    10650054
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Gut microbiota-related mechanisms that impact colorectal cancer risk after bariatric surgery
影响减肥手术后结直肠癌风险的肠道微生物相关机制
  • 批准号:
    10733566
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Obesity, body fat distribution, and breast cancer risk: is visceral fat the culprit after menopause?
肥胖、身体脂肪分布和乳腺癌风险:内脏脂肪是绝经后的罪魁祸首吗?
  • 批准号:
    10586626
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
Optimization of a personalized skin cancer risk intervention for at-risk young adults
针对高危年轻人的个性化皮肤癌风险干预措施的优化
  • 批准号:
    10582944
  • 财政年份:
    2023
  • 资助金额:
    $ 14.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了