Synergising mechanical and osteogenic properties for personalized bone tissue engineering via co-3D printing with fibre reinforced composite and blood

通过纤维增强复合材料和血液的协同 3D 打印,协同机械和成骨特性,实现个性化骨组织工程

基本信息

  • 批准号:
    2739766
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

An ideal biomaterial scaffold for healing load-bearing large bone defects should have cortical bone matching mechanical properties and osteogenic properties for promoting new bone regeneration. Scaffolds possessing these two traits currently do not exist. Current scaffolds made of bioglasses, bioceramics and particle reinforced composites have only achieved mechanical properties in the cancellous bone range. Cortical bone is an order of magnitude stronger than cancellous bone. Metals, such as titanium, are widely used in orthopaedic surgeries where high mechanical properties are sought. However, they are much stiffer than bone. The Young's modulus of titanium is approximately 10 times of cortical bone. This mismatch in mechanical properties shields the physiological stresses from the surrounding bone, which weakens them and makes them prone to fracture over time. Therefore, scaffolds matching human cortical bone mechanical properties are urgently needed.Potent osteogenic biomolecules such as bone morphogenic protein 2 (BMP2) are now widely used in various orthopaedic surgeries such as treating non-union fractures. However, the supraphysiological dosage used in clinic has caused various complications such as uncontrolled excessive bone growth and cancer. The adverse effects associated with supraphysiological dosage of BMP2 has led to a FDA warning to a spinal fusion device (Infuse-BMP2 loaded collagen in a titanium cage) and subsequent rejection of similar products. This has prompted researchers to investigate other means to enhance osteogenesis. Human beings have evolved to fully heal bone fractures at small scales. This process is triggered and regulated by the Regenerative Hematoma/Clot (RHC), which comprises a rich source of endogenous factors and cell populations that are critical for stem/progenitor cell recruitment, immunomodulation, osteogenic differentiation, and ultimate bone healing. However, the RHC is often disturbed or removed during fracture reduction, internal fixation, and debridement in orthopaedic surgeries, leading to poor bone regeneration. Rebuilding the RHC in bone fractures using the patient's own blood could potentially overcome major current limitations in fracture treatment and enable personalized regenerative implants that are low in cost, easily deployable, and low risk to patients compared to stem cell therapies or bone marrow aspiration.The aim of this project is to produce 3D printed continuous fibre reinforced composite scaffolds combined with engineered human blood gels to obtain osteogenic scaffolds with mechanical properties matching cortical bone.The specific objectives are:1. Develop a 3D printing process to fabricate continuous fibre reinforced composite scaffolds. Test the mechanical properties of the printed scaffolds with tuneable architectural parameters.2. Engineer blood gels with tuneable mechanical properties. Co-printing of fibre reinforced composite and blood gel.3. Test in vitro osteogenic differentiation of bone marrow stem cells in blood-composite scaffolds.
理想的修复承重性大骨缺损的生物材料支架应具有皮质骨的力学性能和成骨性能,以促进新骨再生。具有这两个特性的支架目前还不存在。目前,由生物玻璃、生物陶瓷和颗粒增强复合材料制成的支架只能在松质骨范围内获得力学性能。皮质骨比松质骨强一个数量级。钛等金属被广泛用于寻求高机械性能的整形外科手术中。然而,它们比骨头要硬得多。钛的杨氏模数约为皮质骨的10倍。这种机械性能的不匹配将生理应力与周围的骨骼隔离开来,从而削弱了它们,使它们随着时间的推移容易骨折。骨形态发生蛋白2(BMP2)等潜在的成骨生物分子目前被广泛应用于各种骨科手术中,如治疗骨不连。然而,临床上使用的超生理剂量会导致各种并发症,如失控的骨过度生长和癌症。BMP2的不良反应与超生理剂量的BMP2相关,已导致FDA警告脊柱融合装置(Inuse-BMP2在钛笼中负载胶原),并随后拒绝使用类似产品。这促使研究人员研究其他方法来促进成骨。人类已经进化到能够完全治愈小规模的骨折。这一过程由再生血肿/凝块(RHC)触发和调节,RHC由丰富的内源性因子和细胞群组成,对干细胞/祖细胞招募、免疫调节、成骨分化和最终骨愈合至关重要。然而,在骨科手术中,在骨折复位、内固定和清创过程中,RHC经常被干扰或移除,导致骨再生不良。使用患者自身的血液重建骨折中的RHC可能会克服目前骨折治疗中的主要限制,并实现个性化的再生植入物,与干细胞治疗或骨髓抽吸相比,这种方法成本低,易于部署,对患者的风险较低。本项目的目标是生产3D打印的连续纤维增强复合支架,并与工程人血凝胶相结合,获得力学性能与皮质骨匹配的成骨支架。具体目标是:1.开发3D打印工艺来制造连续纤维增强复合支架。用可调的建筑参数测试打印支架的力学性能。设计出机械性能可调的血液凝胶。纤维增强复合材料与血液凝胶的共印花。骨髓干细胞在血液复合支架中的体外成骨分化实验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
组蛋白乙酰化修饰ATG13激活自噬在牵张应力介导骨缝Gli1+干细胞成骨中的机制研究
  • 批准号:
    82370988
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
梯度强/超强静磁场对细胞有丝分裂纺锤体取向和形态的影响及机制研究
  • 批准号:
    31900506
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
力学紧凑加速肝细胞三维复极性行为的作用机制
  • 批准号:
    31100701
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
自成漆酶/介体体系应用于化学机械浆清洁漂白及树脂障碍控制的研究
  • 批准号:
    21006034
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
力学环境对骨愈合初期的新生血管形成图式的影响研究
  • 批准号:
    11072021
  • 批准年份:
    2010
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目
虹膜生物力学特性及临床应用
  • 批准号:
    10472005
  • 批准年份:
    2004
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Mechanobiology of fracture healing during skeletal disuse
骨骼废用期间骨折愈合的力学生物学
  • 批准号:
    10723764
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Age Differences and Mechanisms of Ketogenic Diet Induced Bone Loss
生酮饮食导致骨质流失的年龄差异和机制
  • 批准号:
    10740305
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Sacrificial templated grafts to encourage bone healing through mechanotransduction
牺牲模板移植物通过机械传导促进骨愈合
  • 批准号:
    10811305
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neuronal Regulation of Skeletal Development and Repair
骨骼发育和修复的神经元调节
  • 批准号:
    10704223
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Modulation of MicroRNAs to Engineer a Layered Osteochondral Tissue Construct
调节 MicroRNA 设计分层骨软骨组织结构
  • 批准号:
    10606179
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Regenerative engineering for complex extremity trauma
复杂肢体创伤的再生工程
  • 批准号:
    10584227
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
NG2/CSPG4 in Mandibular Endochondral Fracture Healing
NG2/CSPG4 在下颌软骨内骨折愈合中的应用
  • 批准号:
    10752209
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Determining the Efficacy of a Novel Apatite-Based Antimicrobial Bone Scaffold for Craniofacial Surgical Applications
确定新型磷灰石抗菌骨支架在颅面外科应用中的功效
  • 批准号:
    10573777
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Noninvasive preconditioning of mesenchymal stem cells to improve potency for bone repair
无创预处理间充质干细胞以提高骨修复效力
  • 批准号:
    10940869
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了