AI-Enabled Assessment of Cardiac Function from Echocardiography

人工智能通过超声心动图评估心脏功能

基本信息

  • 批准号:
    2740000
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Aim of the PhD Project:Develop deep learning techniques for automated interpretation of echocardiography images and train/evaluate them using large-scale datasets.Automated characterisation of cardiac function from echocardiography.Automated assessment of valvular heart condition and function.Machine learning based quality control of model inputs and outputsProject Description:Echocardiography is the first port-of-call for assessment and diagnosis of cardiovascular disease (CVD). However, for accurate and robust quantification of many clinical biomarkers cardiac magnetic resonance (CMR) imaging is required. Traditionally, estimating such biomarkers from CMR has required a significant amount of expert interaction, e.g. for contouring the boundaries of the left ventricular myocardium over the cardiac cycle. We have recently published a study that demonstrated that much of this interaction can be avoided using the latest deep learning techniques [1].Nevertheless, it remains the case that echocardiography is cheaper and more widely available than CMR. In this project we aim to translate, adapt and extend the techniques we have developed for CMR into the realm of echocardiography. This is the right time for such a project - deep learning techniques normally require a large amount of data for training and validation, and recently a number of large-scale databases for echocardiography have become available [2,3]. Furthermore, we have access to thousands of echocardiography scans from the KCL/GSTT Biobank. We believe that our expertise in developing automated machine learning based pipelines for biomarker estimation, and the availability of such datasets, creates an exciting opportunity for high-impact translational research.Previous work on using deep learning for echocardiography analysis has mainly focused on automated segmentation of the left ventricular (LV) endocardial boundary [4-6] for estimation of ejection fraction (EF). However, boundary identification is prone to errors due to low image quality, the presence of artefacts, and unusual image features linked to different pathologies. As a result, these algorithms can lack robustness. To overcome this limitation, some works have focused on the direct estimation of EF without endocardial border segmentation [7-8]. Although this solution could be more reliable, it is less interpretable and more difficult for clinicians to assess the accuracy of the results.We propose to develop machine and deep learning-based techniques for automated quantification of echocardiography scans. We will investigate the use of transfer learning from our CMR-based models, and design domain adaption techniques to take advantage of our established knowledge in this new task. Furthermore, we will seek to go beyond the estimation of simple metrics such as end-diastolic and end-systolic volumes and EF, to paint a much richer picture of the heart in health and disease.In addition, echocardiography remains the first line technique for assessing valvular heart disease and regurgitation due to its excellent visualisation of the valve leaflets, which are not visible in CMR. Part of this project will focus on the automated assessment of the anatomy and function of the different heart valves. With appropriate quality control tools and confidence measures, the techniques could, in principle, work in milliseconds and give the sonographer real-time feedback whilst scanning. The subsequent analysis of the estimated biomarkers at scale could enable interesting and valuable research into the nature of CVD and the progression of the heart into disease.
博士项目的目的:开发用于自动解释超声心动图图像的深度学习技术,并使用大规模数据集对其进行训练/评估。从超声心动图中自动表征心脏功能。自动评估瓣膜心脏状况和功能。基于机器学习的模型输入和输出质量控制项目描述:超声心动图是评估和诊断心血管疾病(CVD)的第一个呼叫中心。然而,对于许多临床生物标志物的准确和稳健的定量,需要心脏磁共振(CMR)成像。传统上,从CMR估计这样的生物标志物需要大量的专家交互,例如用于在心动周期上勾画左心室心肌的边界。我们最近发表的一项研究表明,使用最新的深度学习技术可以避免这种相互作用[1]。尽管如此,超声心动图仍然比CMR更便宜,更广泛。在这个项目中,我们的目标是翻译,调整和扩展我们为CMR开发的技术到超声心动图领域。这是一个合适的时间这样的项目-深度学习技术通常需要大量的数据进行训练和验证,最近已经有一些大规模的超声心动图数据库可用[2,3]。此外,我们还可以从KCL/GSTT Biobank获得数千份超声心动图扫描。我们相信,我们在开发基于自动机器学习的生物标记物评估管道方面的专业知识以及此类数据集的可用性,为高影响力的转化研究创造了令人兴奋的机会。之前使用深度学习进行超声心动图分析的工作主要集中在左心室(LV)内膜边界的自动分割[4-6],以估计射血分数(EF)。然而,由于图像质量低、伪影的存在以及与不同病理相关的异常图像特征,边界识别容易出现错误。因此,这些算法可能缺乏鲁棒性。为了克服这一限制,一些工作集中在直接估计EF而不进行内边界分割[7-8]。虽然这种解决方案可能更可靠,但它的可解释性较低,临床医生更难以评估结果的准确性。我们建议开发基于机器和深度学习的技术,用于自动量化超声心动图扫描。我们将从基于CMR的模型中研究迁移学习的使用,并设计领域自适应技术,以利用我们在这项新任务中建立的知识。此外,我们将寻求超越简单的指标,如舒张末期和收缩末期容积和EF的估计,描绘更丰富的心脏健康和疾病的图片。此外,超声心动图仍然是评估心脏瓣膜疾病和反流的第一线技术,因为它具有出色的可视化瓣叶,这是在CMR中不可见的。该项目的一部分将侧重于对不同心脏瓣膜的解剖结构和功能进行自动评估。通过适当的质量控制工具和置信度测量,这些技术原则上可以在毫秒内工作,并在扫描时向超声医师提供实时反馈。随后对大规模估计的生物标志物进行分析,可以对CVD的性质和心脏疾病的进展进行有趣和有价值的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Real-world-data Enabled Assessment for heaLth regulatory decision-Making
现实世界数据支持的健康监管决策评估
  • 批准号:
    10061921
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: SLES: Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems
合作研究:SLES:学习型系统定性和定量安全评估的基础
  • 批准号:
    2331938
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Real-world-data Enabled Assessment for heaLth regulatory decision-Making - REALM
用于健康监管决策的真实数据支持评估 - REALM
  • 批准号:
    10063119
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: SLES: Foundations of Qualitative and Quantitative Safety Assessment of Learning-enabled Systems
合作研究:SLES:学习型系统定性和定量安全评估的基础
  • 批准号:
    2331937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Rational PROTAC design enabled by integrated in silico molecular modeling and in vitro biomimetic affinity assessment
通过集成计算机分子建模和体外仿生亲和力评估实现合理的 PROTAC 设计
  • 批准号:
    10728205
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CISE-MSI: DP: SaTC: MSI Research Capacity Building for Artificial Intelligence (AI)-enabled Vulnerability Assessment and Remediation in Cyberinfrastructure
CISE-MSI:DP:SaTC:MSI 针对网络基础设施中人工智能 (AI) 启用的漏洞评估和修复的研究能力建设
  • 批准号:
    2219464
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
  • 批准号:
    10567960
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
  • 批准号:
    10697381
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
ERI: IoT-Enabled Smart Learning Environment for Ambient Assessment of Socio-Technical Skills in Engineering Students
ERI:支持物联网的智能学习环境,用于对工程学生的社会技术技能进行环境评估
  • 批准号:
    2138846
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of an AI and ML enabled risk assessment platform to reduce fraud in the NHS
开发人工智能和机器学习支持的风险评估平台,以减少 NHS 中的欺诈行为
  • 批准号:
    10004726
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了