Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
基本信息
- 批准号:10567960
- 负责人:
- 金额:$ 41.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-06 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAlgorithmsAreaBiophotonicsBiopsy SpecimenBreast Cancer CellBreast-Conserving SurgeryCancer DetectionCaregiversCellsClassificationClinicalCollectionColorComputer softwareCosmeticsCustomDataDetectionDevelopmentDevicesDiagnosisDyesEmerging TechnologiesEmotionalEosine YellowishEvaluationExcisionFinancial HardshipFrozen SectionsGoalsGuidelinesHead and Neck CancerHealthcare SystemsHistologicHumanImageImaging DeviceInfiltrationLightingMalignant NeoplasmsMammary Gland ParenchymaMammary NeoplasmsMeasurementMethodsMicroscopeMicroscopicMicroscopyNormal tissue morphologyOperating RoomsOperative Surgical ProceduresOpticsPathologicPatientsPropidium DiiodideProstatePublic HealthPublicationsResolutionSamplingScanningSensitivity and SpecificitySiteSpecificitySpecimenSpeedSurfaceSurgeonSystemTechnologyTestingTimeTissue SampleTissuesTouch sensationTrainingUltraviolet RaysValidationVariantWomanbreast lumpectomycancer cellcancer invasivenesscancer recurrencecancer riskcancer surgeryclassification algorithmcontrast enhancedcostdeep learningdeep neural networkdesignfluorescence imagingimaging modalityimprovedinnovationinstrumentlost work timemalignant breast neoplasmmotor controlnew technologynovelpilot testradiological imagingtransfer learningtumorultraviolet
项目摘要
Women with positive margins after breast-conserving surgery (BCS) have a 2-fold increased risk of cancer
recurrence and are recommended to undergo additional re-excision surgery to achieve negative margins.
Additional surgery is associated with significant emotional, cosmetic and financial burdens for patients and their
caregivers. Although radiography, frozen section, touch prep and MarginProbe are available for intraoperative
margin assessment, their accuracy is variable and most, except radiographic examination, are time- and labor-
intensive and not routinely used. Since publication of the 2014 SSO-ASTRO guidelines for invasive cancer
recommending re-excision for positive margins only, the re-excision rates have decreased but remain substantial
(14-18%) with significant variation among surgeons. Because the size of BCS specimens varies significantly (a
few to >40 cm2 per margin) and positive margins often include one or multiple sites/foci, a device with both
variable margin coverage and microscopic resolution that can accurately evaluate an entire surgical specimen
within a few minutes is highly desirable. While new technologies have been proposed, they are either point or
high resolution devices with a very small field-of-view that requires excessive time to scan a specimen, or wide-
field devices with low resolution and poor sensitivity. None has demonstrated the capability of analyzing an entire
lumpectomy specimen with both adequate resolution and time efficiency in a clinical setting. Our goal is to
develop a deep learning (DL) enabled, deep ultraviolet (DUV) scanning microscope (DDSM) for subcellular
resolution and rapid (<5 min) examination of freshly excised tumor specimens during BCS. We hypothesize that
there are significant subcellular optical contrasts that can be identified by the DDSM to differentiate breast cancer
cells from normal tissue. Our preliminary DUV images demonstrate excellent contrasts and accuracy for
identification of breast cancer cells. We propose that large and variable margin coverage, microscopic resolution
and high speed are achieved by using: 1) DUV light for surface excitation of fresh specimens; 2) parallel imaging
of two margins; 3) a low optical manification for fast speed; and 4) DL and sparse-sampling (SS) to rapidly search
for pathological features of cancer cells. In Aim 1, a novel DDSM instrument will be developed and used to image
120 fresh breast tissues. DL classification algorithms will be developed and validated using the 120 tissue
samples in Aim 2. Aim 3 will integrate DL and SS algorithms into the DDSM and demonstrate for fast detection
of variable amount of cancer cells on the surfaces of breast tumor specimens. DDSM is highly innovative,
combining DUV microscopy, parallel imaging, DL classification, and SS in a fast, compact, automated design.
During initial BCS, if the DDSM accurately and efficiently identifies positive margins, additional breast tissue
would be removed from the surgical cavity until negative margins are achieved and unnecessary removal of
additional tissue would be avoided, thus decrease the need for additional surgery. DDSM is a platform technology
that can be used with other imaging modalities or adapted for detection of other cancer or noncancer conditions.
保乳手术(BCS)后切缘阳性的女性患癌症的风险增加2倍
复发,并建议接受额外的再次切除手术,以获得负切缘。
额外的手术与患者和他们的患者的情感、美容和经济负担有关
照顾者。术中虽有X线片、冰冻切片、触觉准备、边缘探头等检查方法
边际评估,其准确性是可变的,除放射检查外,大多数都是时间和人力-
密集的,不经常使用的。自2014年SSO-ASTRO浸润性癌症指南发布以来
建议仅在利润率为正的情况下再切除,再切除比率已有所下降,但仍相当可观
(14-18%),不同外科医生之间差异显著。因为BCS样本的大小差异很大(a
每页边距少至40平方厘米)和正边距通常包括一个或多个位置/焦点,这两种设备都具有
可精确评估整个手术标本的可变边缘覆盖率和显微分辨率
在几分钟内是非常理想的。虽然新技术已经被提出,但它们要么是点的,要么是
高分辨率设备,具有非常小的视场,需要过多的时间来扫描样本,或者是宽视场
分辨率低、灵敏度差的野外设备。还没有人表现出分析整个
在临床环境下,具有足够分辨率和时间效率的肿块切除标本。我们的目标是
研制一种用于亚细胞的深度学习(DL)、深紫外光(DUV)扫描显微镜
在BCS期间,对新鲜切除的肿瘤标本进行分辨和快速(<;5分钟)检查。我们假设
DDSM可识别明显的亚细胞光学对比以鉴别乳腺癌。
来自正常组织的细胞。我们初步的DUV图像显示了出色的对比度和准确性
乳腺癌细胞的鉴定。我们认为,大的和可变的边际覆盖,微观分辨率
通过使用:1)DUV光对新鲜样品进行表面激发;2)平行成像
两个边距;3)低光学化以获得快速;以及4)DL和稀疏采样(SS)以快速搜索
以了解癌细胞的病理特征。在目标1中,将开发一种新型的DDSM仪器并用于成像
120个新鲜的乳房组织。将使用120个组织来开发和验证DL分类算法
AIM 2中的样本。AIM 3将在DDSM中集成DL和SS算法,并演示快速检测
乳腺肿瘤标本表面可见数量不等的癌细胞。DDSM是高度创新的,
在一个快速、紧凑、自动化的设计中结合了DUV显微镜、平行成像、DL分类和SS。
在最初的BCS期间,如果DDSM准确而有效地识别出阳性边缘,则额外的乳腺组织
将从手术腔中取出,直到获得负切边并去除不必要的
避免了额外的组织,从而减少了额外手术的需要。DDSM是一种平台技术
它可以与其他成像方式一起使用,或者适用于其他癌症或非癌症疾病的检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Hye Ye其他文献
Dong Hye Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Hye Ye', 18)}}的其他基金
Deep learning enabled, deep ultraviolet scanning microscopy for intraoperative assessment of margin status during breast cancer surgery
支持深度学习的深紫外扫描显微镜用于乳腺癌手术期间边缘状态的术中评估
- 批准号:
10697381 - 财政年份:2022
- 资助金额:
$ 41.44万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 41.44万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 41.44万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 41.44万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 41.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 41.44万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 41.44万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 41.44万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 41.44万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 41.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 41.44万 - 项目类别:
Research Fellowships














{{item.name}}会员




