Inductive bias selection in Bayesian models
贝叶斯模型中的归纳偏差选择
基本信息
- 批准号:2740634
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project falls within the EPSRC Mathematical Sciences research area.Over the past few years, machine learning models, with neural networks at the forefront, have achieved state-of-the-art performance in a variety of tasks. Among the factors that have contributed to such breakthroughs are significant architectural innovations. Depending on the data one wants to model and the task one wants to solve, extremely specialised models have been developed. For instance, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs) are especially suited for image, sequential, and graph data, respectively. Compared to more general models, such as multi-layer perceptrons (MLPs), these specialised models are much more effective in modelling the data they are designed for, despite not necessarily possessing a higher capacity. In other words, while all these models might have the ability to fit the training data equally well, they differ enormously in how they generalise to unseen data. Such a difference in generalisation performance is due to the different sets of assumptions about how the data points relate to one another, called inductive biases, implicitly encoded in the models' architecture. For example, the way in which the architecture of CNNs is organised encourages them to be translation invariant: images with the same pattern in different positions will result in the same output.A downside of highly specialised models with powerful inductive biases is that they currently require human supervision and domain knowledge to design. In particular, candidate models are usually evaluated with cross-validation until a satisfactory solution is found. As the space of candidate architectures is usually huge, such a process often becomes extremely expensive and time-consuming. Conversely, a recent research direction, pursued by Prof. Van der Wilk and his group, is to use ideas from Bayesian model selection to design training objectives amenable to gradient-based optimisation to simultaneously learn the model's architecture and its parameters. This approach has the potential to significantly streamline the development of task-specific architectures by automating the model design pipeline.During my PhD, I will further investigate automatic inductive bias selection in Bayesian models. In this context, I will study Gaussian processes and Bayesian neural networks, as they represent flexible models that can be easily made to incorporate a wide array of inductive biases. The project will involve designing model parameterisations and training objectives suitable for this task. At the same time, I will strive to combine automatic inductive bias selection with other desirable features of Bayesian modelling, such as uncertainty quantification. To start, I will explore the inductive biases useful for modelling dynamical systems, with the aim of developing robust and scalable Bayesian models with potential applications ranging from the natural sciences to engineering and finance.
该项目属于 EPSRC 数学科学研究领域。在过去的几年里,以神经网络为前沿的机器学习模型在各种任务中都取得了最先进的性能。促成这些突破的因素包括重大的架构创新。根据想要建模的数据和想要解决的任务,已经开发出了极其专业的模型。例如,卷积神经网络 (CNN)、循环神经网络 (RNN) 和图神经网络 (GNN) 分别特别适合图像、序列和图数据。与更通用的模型(例如多层感知器(MLP))相比,这些专用模型在对其设计的数据进行建模时要有效得多,尽管不一定具有更高的容量。换句话说,虽然所有这些模型都可能具有同样好的拟合训练数据的能力,但它们在泛化到未见过的数据的方式上存在巨大差异。泛化性能的这种差异是由于关于数据点如何相互关联的不同假设造成的,称为归纳偏差,隐式编码在模型的架构中。例如,CNN 架构的组织方式鼓励它们具有平移不变性:不同位置具有相同模式的图像将产生相同的输出。具有强大归纳偏差的高度专业化模型的一个缺点是,它们目前需要人类监督和领域知识来设计。特别是,通常通过交叉验证来评估候选模型,直到找到满意的解决方案。由于候选架构的空间通常很大,因此这样的过程通常变得极其昂贵且耗时。相反,Van der Wilk 教授及其团队最近追求的一个研究方向是利用贝叶斯模型选择的思想来设计适合基于梯度的优化的训练目标,以同时学习模型的架构及其参数。这种方法有可能通过自动化模型设计流程来显着简化特定于任务的架构的开发。在攻读博士学位期间,我将进一步研究贝叶斯模型中的自动归纳偏差选择。在这种情况下,我将研究高斯过程和贝叶斯神经网络,因为它们代表了灵活的模型,可以轻松地纳入各种归纳偏差。该项目将涉及设计适合该任务的模型参数化和训练目标。同时,我将努力将自动归纳偏差选择与贝叶斯建模的其他理想功能(例如不确定性量化)结合起来。首先,我将探索可用于动态系统建模的归纳偏差,目的是开发稳健且可扩展的贝叶斯模型,其潜在应用范围包括自然科学、工程和金融。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于mGWAS解析莲特异的苄基异喹啉生物碱(BIAs)合成的关键基因
- 批准号:32170388
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
基于mGWAS解析莲特异的苄基异喹啉生物碱(BIAs)合成的关键基因
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
相似海外基金
The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
- 批准号:
10664339 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Racial/Ethnic Disparities in Health Care and Challenges in Insurance Plan Choices among Older People with Alzheimer’s Disease and Related Dementia: A Mixed Methods Study of Medicare Options
患有阿尔茨海默病和相关痴呆症的老年人在医疗保健方面的种族/民族差异以及保险计划选择的挑战:医疗保险选项的混合方法研究
- 批准号:
10723148 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Vaping and Smoking Cessation in Intensive Longitudinal National Data
密集纵向全国数据中的电子烟和戒烟情况
- 批准号:
10679560 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Effect of Dietary Carbohydrate on Diabetes Control and Beta Cell Function in Children with Newly Diagnosed Diabetes.”
膳食碳水化合物对新诊断糖尿病儿童的糖尿病控制和 β 细胞功能的影响。
- 批准号:
10637032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Comparative Risk of Oral Complications Associated with Medications for Opioid Use Disorder: A Mixed-Methods Approach
与阿片类药物使用障碍药物相关的口腔并发症的风险比较:混合方法
- 批准号:
10765049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying the Ideal Dose of Structured Summer Programming for Mitigating Accelerated Summer BMI Gain
确定结构化夏季计划的理想剂量,以缓解夏季体重指数加速增长
- 批准号:
10653609 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A clinical trial of adaptive treatment for early smoking cessation relapse
早期戒烟复发适应性治疗的临床试验
- 批准号:
10752773 - 财政年份:2023
- 资助金额:
-- - 项目类别: