Development of robust statistical and machine learning algorithms for extrapolation in causal inference
开发用于因果推理外推的稳健统计和机器学习算法
基本信息
- 批准号:2740759
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project falls within the EPSRC mathematical sciences research area. Extrapolation in causal inference refers to the process of making predictions or estimating causal effects for situations or contexts that lie outside the observed data range. It allows researchers to generalize treatment effect estimates obtained from a particular study to new or different settings. For example, if a clinical trial evaluates a drug's effectiveness in a specific patient population, researchers may want to extrapolate the results to assess the drug's efficacy in a different population. This is a crucial aspect of treatment effect estimation in causal inference because real-world applications often require making inferences beyond the scope of available data. It involves making assumptions about the similarity between the observed and extrapolated contexts. These assumptions can introduce uncertainty and potential biases into the estimated treatment effects. Common challenges include differences in baseline characteristics, unmeasured confounders, and variations in treatment response between the observed and extrapolated contexts. Although in this big data era machine learning has shown its impressive capability in predictive performance with sufficient data, the performance is usually unstable, making its contribution not reliable. The lack of a robust machine learning model being able to extrapolate and transfer learning on existing data to target population are present and interweave. We aim to build a theory of robust extrapolation in causal inference to address all the above questions by marrying machine learning and statistics. We will deliver scalable methods that extrapolate well, with rigorous theoretical proof on uncertainty quantification. Collaborating with our industry partners (Novartis), we have made some progress on data collection and application scenario identification. We expect to bring theory to practice where our method can facilitate clinical trial design and treatment effect identification / estimation. This will be done by first getting a thorough understanding of the simpler phenomenon of clinical trial decision making in this context. In summary, extrapolation in causal inference treatment effect estimation is essential when researchers aim to apply causal effect estimates beyond the confines of their observed data. While it can be challenging and requires careful consideration of assumptions and validation, well-designed extrapolation methods enhance the applicability and generalizability of causal inference findings in various domains, including healthcare, social sciences, and policy analysis.
该项目属于EPSRC数学科学研究领域。因果推断中的外推是指对观察到的数据范围之外的情景或情境做出预测或估计因果效应的过程。它允许研究人员将从特定研究中获得的治疗效果估计推广到新的或不同的环境中。例如,如果一项临床试验评估了一种药物在特定患者群体中的有效性,研究人员可能想要推断结果以评估该药物在不同人群中的有效性。这是因果推断中治疗效果估计的一个关键方面,因为现实世界的应用通常需要做出超出可用数据范围的推断。它涉及到对观察到的上下文和推断出的上下文之间的相似性进行假设。这些假设可能会给估计的治疗效果带来不确定性和潜在的偏差。共同的挑战包括基线特征的差异,未测量的混杂因素,以及在观察和推断的情况下治疗反应的差异。尽管在这个大数据时代,机器学习在拥有足够数据的情况下表现出了令人印象深刻的预测性能,但其性能通常是不稳定的,使得其贡献不可靠。缺乏一个稳健的机器学习模型,能够推断现有数据并将学习传递给目标人群,这一点是存在的,而且是相互交织的。我们的目标是建立因果推理中的稳健外推理论,通过将机器学习和统计学相结合来解决所有上述问题。我们将提供可扩展的方法,这些方法可以很好地进行推断,并在不确定性量化方面提供严格的理论证明。与我们的行业合作伙伴(诺华)合作,我们在数据收集和应用场景识别方面取得了一些进展。我们希望将理论应用于实践,使我们的方法能够促进临床试验设计和治疗效果的识别/评估。这将通过首先彻底了解在这种背景下临床试验决策的更简单的现象来完成。总之,当研究人员的目标是将因果效应估计应用于他们观察到的数据的范围之外时,在因果推断治疗效果估计中的外推是必不可少的。虽然这可能是具有挑战性的,需要仔细考虑假设和验证,但设计良好的外推方法提高了因果推理结果在各个领域的适用性和概括性,包括医疗保健、社会科学和政策分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Understanding robust cellular information processing in complex environments and development of enabling single-cell analysis technologies
了解复杂环境中强大的细胞信息处理以及单细胞分析技术的开发
- 批准号:
10552335 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of noise-robust statistical anomaly detection procedures for condition-based maintenance
开发基于状态的维护的抗噪声统计异常检测程序
- 批准号:
21K14372 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust Characterization of Brain-Heart Coupling Across Development and Modulations by Disordered Sleep
脑心耦合在发育和睡眠障碍调节中的稳健表征
- 批准号:
10293076 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Robust Characterization of Brain-Heart Coupling Across Development and Modulations by Disordered Sleep
脑心耦合在发育和睡眠障碍调节中的稳健表征
- 批准号:
10443869 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Elements: Development of Assumption-Free Parallel Data Curing Service for Robust Machine Learning and Statistical Predictions
要素:开发用于鲁棒机器学习和统计预测的无假设并行数据固化服务
- 批准号:
1931380 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a robust statistical framework for the effective prediction of composite material properties under uncertainty and variability for process control and supply chain management
开发强大的统计框架,用于在过程控制和供应链管理的不确定性和可变性下有效预测复合材料性能
- 批准号:
486885-2016 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Development and application of a robust statistical framework for characterizing gas plumes using unmanned aerial vehicles (UAVs)
开发和应用强大的统计框架,利用无人机(UAV)来表征气体羽流
- 批准号:
516743-2018 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Development and application of a robust statistical framework for characterizing gas plumes using unmanned aerial vehicles (UAVs)
开发和应用强大的统计框架,利用无人机(UAV)来表征气体羽流
- 批准号:
516743-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Development of a robust statistical framework for the effective prediction of composite material properties under uncertainty and variability for process control and supply chain management
开发强大的统计框架,用于在过程控制和供应链管理的不确定性和可变性下有效预测复合材料性能
- 批准号:
486885-2016 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral