Improving the reliability of neural networks for medical imaging
提高医学成像神经网络的可靠性
基本信息
- 批准号:2742370
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the past decade, large strides have been made in machine learning and artificial intelligence for analysing medical imaging data. These advances have been primarily fuelled by development of advanced deep neural networks. However, a major problem with this technology is that these models are not robust, and their performance can be influenced by variations of the data characteristics. Specifically, it has been commonly observed that performance of neural networks degrades significantly when they are applied on data that present differences from the data that were used for training the models. For example, deep neural networks have been shown to perform poorly on data from people from ethnic minorities that were under-represented in the training data. This constitutes a major barrier to implementing such models in high-risk applications such as processing medical images - where an incorrect diagnosis could have major consequences. Therefore, creating methods to improve the robustness and reliability of neural networks will allow safe and effective integration of this technology in medical applications, which promises to deliver significant benefits to healthcare such as reducing the staff strain, accelerating and improving diagnosis of disease, and ultimately improving patient outcome.The aim of this project is to work on improving the reliability of neural networks for the study of medical images - such as X-ray, CT and MRI images. One aim of the project is to create methods to enable neural network models to quantify their own uncertainty in their predictions. This will provide them the ability to inform the user when it is likely that a prediction may be wrong (known as 'failing gracefully'). This would allow the user, such as clinicians, to judge whether to include the model's prediction in follow-up decision making or discard the model's output. Moreover, another aim is to create a tool for the neural network to clearly explain its reasoning for why it made a prediction based upon the data it was given. Using techniques such as causal machine learning, models will be able to explain what features led to a prediction, bolstering their interpretability, as well as explaining what input data will cause failures. For example, many baseline models currently misidentify motion artefacts in images as pathology, which could be studied using causal machine learning.This research aims to enable safer and more reliable use of deep neural networks for healthcare. This can have major impact as the technology has the potential to improve diagnosis and treatment, but its integration in clinical workflows is currently hindered due to the discussed technology limitations. Furthermore, advancements from this research will also facilitate the implementation of deep neural networks in other high-risk applications beyond healthcare - such as self-driving vehicles.This project is multi-disciplinary, combining advances in computer science with medical data. Therefore, this project falls within the EPSRC Healthcare Technologies theme.
在过去的十年中,机器学习和人工智能在分析医学成像数据方面取得了长足的进步。这些进步主要是由高级深度神经网络的发展推动的。然而,这种技术的一个主要问题是,这些模型不健壮,并且它们的性能可能会受到数据特征变化的影响。具体地说,人们普遍观察到,当神经网络应用于与用于训练模型的数据存在差异的数据时,神经网络的性能会显著下降。例如,深度神经网络在训练数据中代表性不足的少数民族数据上表现不佳。这构成了在高风险应用中实施此类模型的主要障碍,例如处理医学图像-其中错误的诊断可能会产生重大后果。因此,创建提高神经网络的鲁棒性和可靠性的方法将允许将该技术安全有效地集成到医疗应用中,这有望为医疗保健带来重大利益,例如减少工作人员的压力,加速和改善疾病的诊断,并最终改善患者的治疗效果。该项目的目的是致力于提高神经网络在医学图像研究中的可靠性-例如X射线、CT和MRI图像。该项目的一个目标是创建方法,使神经网络模型能够量化其预测中的不确定性。这将使他们能够在预测可能出错时通知用户(称为“失败”)。这将允许用户(诸如临床医生)判断是否将模型的预测包括在后续决策制定中或丢弃模型的输出。此外,另一个目标是为神经网络创建一个工具,以清楚地解释它为什么根据给定的数据进行预测。使用因果机器学习等技术,模型将能够解释哪些特征导致预测,增强其可解释性,并解释哪些输入数据将导致失败。例如,目前许多基线模型将图像中的运动伪影错误识别为病理,可以使用因果机器学习进行研究。这项研究旨在使深度神经网络在医疗保健中的使用更加安全和可靠。这可能会产生重大影响,因为该技术具有改善诊断和治疗的潜力,但由于所讨论的技术限制,其在临床工作流程中的整合目前受到阻碍。此外,这项研究的进展也将促进深度神经网络在医疗保健以外的其他高风险应用中的实施-例如自动驾驶车辆。该项目是多学科的,将计算机科学的进步与医疗数据相结合。因此,本项目属于EPSRC医疗保健技术主题的福尔斯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于贝叶斯网络可靠度演进模型的城市雨水管网整体优化设计理论研究
- 批准号:51008191
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Evaluating the feasibility of an innovative point-of-care screening tool for detection of infant motor delay within the newborn period
评估用于检测新生儿时期婴儿运动迟缓的创新护理点筛查工具的可行性
- 批准号:
10742419 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Neural Network Approximation of PDEs - Efficiency, Reliability and Quantifiable Accuracy
偏微分方程的神经网络逼近 - 效率、可靠性和可量化的准确性
- 批准号:
2324364 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Validation of Prenatal Rabbit Hypoxia Ischemia as a Model of Cerebral Palsy-induced Pain
产前兔缺氧缺血作为脑瘫引起的疼痛模型的验证
- 批准号:
10813313 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A new reference atlas of brain networks to investigate neuropsychiatric traits in adolescents
用于研究青少年神经精神特征的新大脑网络参考图集
- 批准号:
10585096 - 财政年份:2023
- 资助金额:
-- - 项目类别:
PsyRAT: Extensible Open-Source Software for Applying Generalizability Theory to Assess Psychometric Reliability of Trial-Wise Scores and Optimize Tasks for RDoC
PsyRAT:可扩展的开源软件,用于应用概括性理论来评估试验分数的心理测量可靠性并优化 RDoC 任务
- 批准号:
10676972 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10678900 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Role of NF-kB in sympathetic hyperreflexia after spinal cord injury
NF-kB在脊髓损伤后交感神经反射亢进中的作用
- 批准号:
10608108 - 财政年份:2021
- 资助金额:
-- - 项目类别:
The effect of encoding cue reliability on the function and development of the barn owl auditory system
编码线索可靠性对仓鸮听觉系统功能和发育的影响
- 批准号:
10469998 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Development of computational methods for increasing reliability and safety of deep neural networks for medical imaging
开发提高医学成像深度神经网络可靠性和安全性的计算方法
- 批准号:
21H03545 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)