Using Wide Bandgap Semiconductors to Develop High Performance Inverters in Electric Vehicles

使用宽带隙半导体开发电动汽车中的高性能逆变器

基本信息

  • 批准号:
    2743588
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

This project falls within the EPSRC Electrical motors and drives and electromagnetics research area.This project is funded through the Industrial CASE award, with the industrial partner being YASA Limited.Research ContextWith the global market shares of electrified and electric vehicles predicted to almost triple between the years 2020 and 2025, the role of electric powered vehicles in the automotive industry is increasing at an astonishing rate. Although the global demand for electric vehicles is increasing, solutions to the various problems that are present with their design need to be addressed. Among these problems, one of the key bottlenecks is the range of an electric vehicle. To increase the distance per kWh, there are multiple systems that can be looked at, with one of them being the inverter. Improvements in the performance of the inverter can considerably increase the range of an electric vehicle.One of the key future developments in the improvement of electric vehicle inverters is the use of wide bandgap semiconductors. The higher thermal conductivities and operating frequency of wide bandgap semiconductors also play a role in their preference in electric vehicle inverters. This project will aim to develop ways of utilising the beneficial properties of wide bandgap semiconductors, to improve performance of electric vehicle inverters.Primary Research Aims and ObjectivesThe objective of the research will be to design and test new circuit designs, which utilise the properties of wide bandgap semiconductors to their advantage. This concept will be proved over a number of tests, designed to simulate the load of an electric motor in a vehicle.Proposed MethodologyAn extensive literature review will be carried out, studying current modern inverters and how their structures and function depend on the properties of IGBTs, specifically the constraints created by them and how these influenced the design of the inverters. Further study of wide bandgapsemiconductors and their properties will be done, also emphasising their limitations, as these will be different from IGBTs and so will pose different design problems. Research into other possible wide bandgap semiconductors, other that the conventional ones of GaN and SiC, could yield semiconductors with more useful properties in the context of this problem.Next, the most common inverter structures will be examined to find the core concepts they use in their functionality and how these are influenced by practical limitations of the components in the circuit, so as to help gauge how the benefit of using wide bandgap semiconductors can be maximised, when standing in for IGBTs in the current inverter circuits.Once wide bandgap semiconductors have been incorporated into current inverter structures, the circuits can be reassessed for limitations is their performance, due to other components in the circuit and the general circuit structure. From there, new circuit structures can be devised to properly utilise wide bandgap semiconductors and their beneficial characteristics.After new inverter circuits have been proposed, these can be tested against current inverters, when under a load which properly simulates a vehicle motor under use. This will not only help to test the efficiency of the new inverter circuits against existing one, but aid in checking the circuits' functionality under non-standard test loads, i.e. the durability of the circuits when not just driving a motor at a constant speed and torque.
该项目福尔斯属于EPSRC电机和驱动器以及电磁学研究领域。该项目通过工业案例奖获得资助,工业合作伙伴为YASA Limited。研究背景随着全球电动汽车和电动汽车的市场份额预计在2020年至2025年期间几乎增加两倍,电动车辆在汽车工业中的作用正以惊人的速度增长。虽然全球对电动汽车的需求正在增加,但需要解决其设计中存在的各种问题。在这些问题中,关键的瓶颈之一是电动汽车的范围。为了增加每千瓦时的距离,可以考虑多个系统,其中之一是逆变器。逆变器性能的改善可以显著增加电动汽车的行驶里程。未来改进电动汽车逆变器的关键发展之一是使用宽带隙半导体。宽带隙半导体的更高导热率和工作频率也在它们在电动汽车逆变器中的偏好中发挥作用。该项目旨在开发利用宽带隙半导体的有益特性的方法,以提高电动汽车inverter.Primary研究目的和ObjectivesThe研究的目的将是设计和测试新的电路设计,利用宽带隙半导体的特性,以他们的优势。这一概念将证明了一些测试,旨在模拟负载的电动机在vehicle.Proposed MethodologyAn广泛的文献综述将进行,研究目前的现代逆变器,以及它们的结构和功能如何取决于IGBT的属性,特别是由他们创建的约束,以及这些如何影响逆变器的设计。将对宽带隙半导体及其特性进行进一步研究,同时强调其局限性,因为这些半导体与IGBT不同,因此会带来不同的设计问题。对其他可能的宽带隙半导体的研究,除了传统的GaN和SiC之外,可以产生在这个问题的背景下更有用的特性的半导体。接下来,最常见的逆变器结构将被检查,以找到它们在功能中使用的核心概念,以及这些概念如何受到电路中元件的实际限制的影响,以便帮助测量当在当前逆变器电路中代替IGBT时,如何最大化使用宽带隙半导体的益处。一旦宽带隙半导体已经被并入到当前逆变器结构中,就可以重新评估电路的性能限制,由于电路中的其它元件和一般电路结构。在此基础上,可以设计新的电路结构,以适当利用宽带隙半导体及其有益特性。在提出新的逆变器电路后,可以在适当模拟使用中的车辆电机的负载下,对电流逆变器进行测试。这不仅有助于测试新逆变器电路与现有逆变器电路的效率,还有助于检查电路在非标准测试负载下的功能,即在不只是以恒定速度和扭矩驱动电机时电路的耐用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

CFHTLS-Wide和CFHTLS-Stripe82观测的弱引力透镜星系团巡天
  • 批准号:
    11103011
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
  • 批准号:
    2234479
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FuSe-TG: Co-design based Wide bandgap Semiconductor Research Center
FuSe-TG:基于协同设计的宽带隙半导体研究中心
  • 批准号:
    2235373
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: A compact, 3-level, high efficiency, 4-port, modular universal power conversion system with Internet of Things (IOT) using Wide Bandgap (WBG) devices
SBIR 第一阶段:采用宽带隙 (WBG) 器件的紧凑型、三电平、高效率、4 端口、模块化通用电源转换系统,具有物联网 (IOT) 功能
  • 批准号:
    2153880
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
High-Bandwidth Sensing for Wide-bandgap Power Conversion
用于宽带隙功率转换的高带宽传感
  • 批准号:
    EP/W021315/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
In situ three-dimensional measurement of wide bandgap semiconductors with stimulated Raman scattering
利用受激拉曼散射对宽带隙半导体进行原位三维测量
  • 批准号:
    23H00271
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
SBIR Phase I: Sonic Lift-Off (SLO) for Lower Cost Wide Bandgap Devices
SBIR 第一阶段:用于低成本宽带隙器件的声波剥离 (SLO)
  • 批准号:
    2233368
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of an Application Interface for Wide Bandgap Semiconductor Simulation Tool
宽带隙半导体仿真工具应用接口的开发
  • 批准号:
    10073641
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
  • 批准号:
    2236846
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了