Evaporation of Interacting Droplets on an Inclined Surface
倾斜表面上相互作用的液滴的蒸发
基本信息
- 批准号:2744523
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed project aims to tackle novel aspects of evaporating drops on an inclined plane by using a combination of numerical simulations and asymptotic theory. The problem set up for studying evaporation of a sessile, possibly containing suspended solutes. The cross-section of the drop at time t = 0 is circular with an initially prescribed contact angle. The droplet evaporates, converting liquid to vapour, as a result of which the drop loses mass and shrinks. The local mass flux is simply given by the surface gradient of the vapour concentration. The vapour concentration in the bulk is assumed to satisfy Laplace's equation, i.e. it simply diffuses. Analytical progress can be made by making some simplifying assumptions. The drop is assumed to be thin, i.e. it always maintains a flat disc shape. Consequently, analytical expressions for the vapour concentration problem are obtained by using asymptotics. Similarly, the thin drop assumption makes it possible to solve the hydrodynamics of the drop using well-established lubrication theory. Finally, the particles concentration satisfies advection-diffusion equation which is coupled to the flow problem which is solved numerically. Hence, there are three entities that interact with each other nonlinearly, the vapour concentration, flow velocity, and solute particles concentration giving rise to very rich dynamics. The final outcome of the model of practical interest is the solute concentration that is left behind after the drop has completely evaporated. Recently, black-box solvers like Surface Evolver have been used to obtain steady drop shapes by minimising the Helmholtz free energy and then the evaporation rate is computed by solving Laplace's equation for the vapor concentration field via a finite-volume method. To the best of our knowledge, there are no simulations that make use of boundary element method (BEM) to solve the problem of evaporating droplets even though it is the natural choice for numerical simulations as it is most suitable for solving Laplace's and Stokes equation. We first propose to fill this gap in literature by performing BEM simulations of an evaporating sessile droplet. The results will be compared against lubrication theory described above. The solute particles concentration satisfy advection equation making standard BEM inapplicable and hence, a dual-reciprocity BEM method will have to be employed. However, this problem can be circumvented easily with a Langrangian description for the particles that are simply advected with the flow field generated inside the droplet. The problem of evaporating drops on inclined and vertical planes is of practical significance in many industrial settings. Inclining the plane allows gravitational forces to take a central role in the final deposit patterns. This problem has been solved numerically recently in two- and three-dimensions, respectively. However, the natural choice for simulations, BEM, has not employed to study this problem so far and transient drop dynamics remains unaddressed. We propose to extend the results by including the effect of wall inclination. Finally, the most practical situation where a pair drops on an inclined plane are interacting with each other through the vapour field will be tackled. This again can be easily achieved using BEM. The problem of interacting evaporating drops has not been studied numerically so far.
该项目旨在利用数值模拟和渐近理论相结合的方法来解决倾斜平面上蒸发液滴的新问题。这个问题是为了研究可能含有悬浮溶质的固着物的蒸发而设立的。在时间t=0时,液滴的横截面是圆形的,具有最初规定的接触角。液滴蒸发,将液体转化为蒸汽,结果液滴失去质量并收缩。局部质量通量简单地由蒸气浓度的表面梯度给出。假定主体中的蒸汽浓度满足拉普拉斯方程,即它简单地扩散。通过做一些简化的假设,可以取得分析上的进展。假设液滴很薄,即它始终保持扁平的圆盘形状。由此,利用渐近性得到了水蒸气浓度问题的解析表达式。同样,薄滴假设使得使用成熟的润滑理论来求解液滴的流体动力学成为可能。最后,颗粒浓度满足对流扩散方程,并将其耦合到数值求解的流动问题中。因此,有三个实体相互作用是非线性的,蒸气浓度、流速和溶质颗粒浓度产生了非常丰富的动力学。有实际意义的模型的最终结果是液滴完全蒸发后留下的溶质浓度。最近,人们利用Surface Evolver等黑盒求解器通过最小化Helmholtz自由能来获得稳定的液滴形状,然后通过有限体积法求解蒸汽浓度场的拉普拉斯方程来计算蒸发率。虽然边界元方法最适合于求解拉普拉斯方程和斯托克斯方程,是数值模拟的必然选择,但目前还没有利用边界元方法来求解液滴蒸发问题的模拟。我们首先提出通过对蒸发的固着液滴进行边界元模拟来填补这一空白。计算结果将与上述润滑理论进行比较。溶质颗粒浓度满足平流方程,使得标准边界元不再适用,因此必须采用双互易边界元方法。然而,对于简单地与液滴内部产生的流场平流的颗粒,这个问题可以很容易地通过朗格朗日描述来规避。在许多工业环境中,倾斜和垂直平面上的液滴蒸发问题具有重要的现实意义。倾斜平面可以使重力在最终的沉积模式中发挥核心作用。最近,这个问题分别在二维和三维得到了数值求解。然而,模拟的自然选择,边界元,到目前为止还没有用来研究这个问题,瞬时液滴动力学仍然没有得到解决。我们建议通过考虑墙倾斜的影响来扩展结果。最后,我们将讨论一对液滴在斜面上通过蒸汽场相互作用这一最实际的情况。这同样可以使用边界元很容易地实现。蒸发液滴的相互作用问题到目前为止还没有得到数值研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于血浆外泌体中piwi-interacting RNA和microRNA原位检测的乳腺癌液体活检方法研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
杨树光敏色素互作因子4 (Phytochrome Interacting Factor 4, PIF4) 调控植物生长与季节性休眠的分子机理研究
- 批准号:31800561
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
受体相互作用蛋白3(Receptor-interacting protein 3,RIP3)调控神经元缺血性程序性坏死的作用及机制研究
- 批准号:81271272
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
拟南芥DIF(DRIP1-Interacting Factor)在胁迫信号应答中的功能分析
- 批准号:31200202
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Understanding Emission, Absorption and Energy Transfer Involving Classical and Quantum Light Interacting with Molecules
了解涉及经典光和量子光与分子相互作用的发射、吸收和能量转移
- 批准号:
2347622 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Making Strongly Interacting Photons
产生强相互作用的光子
- 批准号:
DP240100248 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Taming the complexity of the law: modelling and visualisation of dynamically interacting legal systems [RENEWAL].
驾驭法律的复杂性:动态交互的法律系统的建模和可视化[RENEWAL]。
- 批准号:
MR/X023028/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Interacting ice Sheet and Ocean Tipping - Indicators, Processes, Impacts and Challenges (ISOTIPIC)
冰盖和海洋倾覆的相互作用 - 指标、过程、影响和挑战 (ISOTIPIC)
- 批准号:
NE/Z503344/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
- 批准号:
24K06843 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
The interacting brain: defining the role of dynamism among canonical brain networks during interactive behaviour
交互大脑:定义交互行为过程中典型大脑网络动态的作用
- 批准号:
BB/X017095/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




