Biohybrid Materials for Improved Electron Transfer in Bioelectrochemical Systems

用于改善生物电化学系统中电子转移的生物混合材料

基本信息

  • 批准号:
    2745493
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

As the global population continues to grow, there has been a corresponding surge in energy demand, leading to a sharp rise in environmental CO2 levels. To facilitate economic progress whilst mitigating environmental risks, it is imperative to adopt sustainable technologies. Bioelectrochemical systems (BES) are unique approaches to recycling CO2 using microorganisms. BES can convert low-cost substrates, such as waste, into energy and value-added products, thereby emerging as a valuable tool for transitioning towards a circular economy. Microbial electrosynthesis (MES) involves the anaerobic reduction of CO2 into organic products. MES requires an external power source as the thermodynamic driving force for CO2 reduction and offers an attractive alternative to produce a versatile range of resources, such as hydrogen, acetate, and biopolymers. However, the efficiency of BES systems cannot currently compete with traditional fuel cells. Several bottlenecks, including energy efficiency and costs, must be addressed to achieve economic viability.The electrode is a crucial component of BES as it provides the surface for biofilm formation. Extracellular electron transfer (EET) within the biofilm is facilitated through conductive surface proteins called "nanowires". However, poor surface interactions at the bacteria and electrode interface limit electron transport, resulting in low energy conversion efficiencies and confining BES to prototypes. The incompatibility between abiotic and biotic surfaces is predicted to give rise to poor electron transfer. Synthetic materials can disrupt bacteria's natural electron transport chain (ETC) pathway and inhibit metabolic activity. A mismatch exists between the multiheme structural components of protein nanowires and those of close-packed metallic structures in electrodes, thereby increasing impedance. There is also insufficient contact between the bacteria and the electrode if unfavourable growth conditions are present at the electrode surface. Therefore, novel electrodes must be developed to seamlessly integrate biotic and abiotic components without compromising costs.A strategy to mitigate limitations is to develop biohybrid systems. A biohybrid electrode, also known as a "living electrode", is a hybrid system that integrates living components, i.e., bacteria, with synthetic materials. Cell growth must be sustained at the electrode interface without inhibiting material conductivity to sustain EET. Cupriaviadus necator H16 (C. necator) is a gram-negative bacterium capable of oxidising many substrates and utilising CO2 as its sole carbon source. It is, therefore, a promising candidate for valorising CO2 to yield a versatile array of value-added products through MES. The successful development of a biohybrid electrode is anticipated to be a pivotal moment for BES's scalability and economic viability.This study aims to develop a novel biohybrid electrode to improve the electron transfer kinetics between abiotic and biotic interfaces in bioelectrochemical systems. The biohybrid electrode will be made from a biocompatible acrylate polymer and engineered to be conductive. The conductivity should not compromise the biocompatibility of the electrode in order to maintain biofilm formation. As a proof of concept, the performance of the biohybrid electrode will be validated in an MES by monitoring the biosynthesis of intracellular polyhydroxybutyrate (PHB) from CO2 using Cupriavidus necator H16.
随着全球人口的持续增长,能源需求也随之激增,导致环境中二氧化碳水平急剧上升。为了促进经济发展,同时减少环境风险,必须采用可持续技术。生物电化学系统(BES)是利用微生物回收二氧化碳的独特方法。BES可以将低成本的基材(如废物)转化为能源和增值产品,从而成为向循环经济过渡的宝贵工具。微生物电合成(MES)涉及将二氧化碳厌氧还原成有机产物。MES需要外部电源作为二氧化碳减排的热力学驱动力,并提供了一种有吸引力的替代方案,可以生产多种资源,如氢气、醋酸盐和生物聚合物。然而,BES系统的效率目前还无法与传统燃料电池竞争。为了实现经济可行性,必须解决几个瓶颈,包括能源效率和成本。电极是BES的重要组成部分,因为它为生物膜的形成提供了表面。生物膜内的细胞外电子转移(EET)是通过被称为“纳米线”的导电表面蛋白来促进的。然而,细菌和电极界面的不良表面相互作用限制了电子传递,导致能量转换效率低,并将BES限制在原型中。非生物和生物表面之间的不相容性预计会导致电子传递不良。合成材料可以破坏细菌的天然电子传递链途径,抑制细菌的代谢活性。蛋白质纳米线的多血红素结构成分与电极中紧密排列的金属结构成分之间存在不匹配,从而增加了阻抗。如果电极表面存在不利的生长条件,则细菌和电极之间的接触也不足。因此,必须开发新型电极,在不影响成本的情况下无缝集成生物和非生物组件。缓解限制的一个策略是开发生物混合系统。生物杂化电极,也称为“活电极”,是一种将活成分(即细菌)与合成材料相结合的混合系统。细胞生长必须维持在电极界面,而不抑制材料的导电性,以维持EET。Cupriaviadus necator H16 (C. necator)是一种革兰氏阴性细菌,能够氧化许多底物并利用二氧化碳作为其唯一的碳源。因此,它是一个很有前途的候选者,可以通过MES使二氧化碳增值,从而产生一系列多用途的增值产品。生物混合电极的成功开发有望成为BES可扩展性和经济可行性的关键时刻。本研究旨在开发一种新型的生物杂化电极,以改善生物电化学系统中非生物和生物界面之间的电子传递动力学。这种生物杂化电极将由一种生物相容性丙烯酸酯聚合物制成,并设计成导电的。电导率不应损害电极的生物相容性,以维持生物膜的形成。作为概念验证,生物杂交电极的性能将在MES中通过监测Cupriavidus necator H16从二氧化碳中合成细胞内聚羟基丁酸盐(PHB)来验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Journal of Materials Science & Technology
  • 批准号:
    51024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Recycled glass and plastic for improved and sustainable drainage materials
回收玻璃和塑料用于改进和可持续的排水材料
  • 批准号:
    10076512
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Understanding materials at the nanoscale for improved thermoelectric performance
了解纳米级材料以提高热电性能
  • 批准号:
    2826006
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Designing a Textile Waste Service to Increase the Reuse of Materials through Textile Identification Technology and Improved Systems
设计纺织品废物处理服务,通过纺织品识别技术和改进系统提高材料的再利用
  • 批准号:
    10076127
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
I-Corps: Accelerated, materials sparing powder compaction characterization for improved pharmaceutical tablet formulation design
I-Corps:加速、节省材料的粉末压实表征,以改进药物片剂配方设计
  • 批准号:
    2341264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Improved resilience and novel functions of low-density porous materials via cross-scale structural control
通过跨尺度结构控制提高低密度多孔材料的弹性和新功能
  • 批准号:
    22H00342
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Engineered surfaces for the control of protein and cell interactions and improved biomedical materials
用于控制蛋白质和细胞相互作用的工程表面以及改进的生物医学材料
  • 批准号:
    DGECR-2022-00079
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Development of novel composite materials for Escalator Handrails with improved properties
开发性能改进的自动扶梯扶手新型复合材料
  • 批准号:
    535998-2018
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research and Development Grants
Engineered surfaces for the control of protein and cell interactions and improved biomedical materials
用于控制蛋白质和细胞相互作用的工程表面以及改进的生物医学材料
  • 批准号:
    RGPIN-2022-05258
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Materials and Processes for Improved Photonic Package Stability
提高光子封装稳定性的材料和工艺
  • 批准号:
    573454-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Sustainable UK modular construction: Nanocomposite enhanced recycled materials with improved mechanical properties, fire retardancy and recyclability.
可持续的英国模块化结构:纳米复合材料增强了回收材料,具有改进的机械性能、阻燃性和可回收性。
  • 批准号:
    10021484
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了