Generalising Reaction-Diffusion and Turing Patterning Systems
概括反应扩散和图灵图案系统
基本信息
- 批准号:2747341
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Since Alan Turing's 1952 work on morphogenesis, mathematicians have studied reaction-diffusion systems in an attempt to explain and quantify the emergence of organised structures in biological organisms. Although the canonical two species system, comprising a coupled system of partial differential equations, has been comprehensively studied, research is moving away from this paradigm towards more biologically realistic models. In this project, we aim to explore a number of extensions to this base model and move towards more biologically realistic models. We have identified a number of possibilities, including the extension to three species systems. These have not been extensively studied, and little to no research exists on the effects of spatially heterogeneous reaction kinetics on such systems. Such an extension is not only more mathematically interesting and challenging, and biologically realistic, but also has the potential to explain unsolved discrepancies between existing models and the biology, such as how morphogens can have the different diffusivities predicted by the models whilst being similar sized objects in the same medium. In addition, such systems may be more likely to exhibit subcritical bifurcations, which are less studied than the supercritical case, and could play an important role in robust pattern formation. This links the research areas of non-linear systems and mathematical biology. Another route of novel investigation is to study spatial non-locality in the context of developmental biology. Non-local effects are much more commonly applied to ecology, however at an intercellular scale, they can be used to describe long-ranged cell protrusions which are essential for pattern formation in a number of situations. For example, cell protrusions of the melanophores of zebrafish interact with xanthophores to govern the formation of stripes. A further example is the differentiation pattern of spinal neurons which is regulated by protrusions from the neurons themselves. Modelling and simulating such systems using partial differential equations with non-local terms will require new developments within the research area of mathematical analysis and numerical analysis. A further possibility would be to study reaction-diffusion in layered domains, which are relevant to a number of biological contexts. Recent work has been done on systems with separate bulk and surface regions, mediated by an interfacial boundary. The presence of the surface layer and coupling at the interface drastically change the pattern formation behaviour, including the instability criteria. There are many possible extensions to this. One in particular is to investigate the effects of different transport functions at the interface. This would incorporate the research area of surface science in order to contribute to understanding within biology. This cross-disciplinary project falls within the EPSRC's broad mathematical sciences theme. As highlighted above, the research areas it covers include mathematical biology, non-linear systems, numerical analysis, mathematical analysis, and surface science.
自从阿兰·图灵1952年关于形态发生的研究以来,数学家们一直在研究反应扩散系统,试图解释和量化生物有机体中有组织结构的出现。尽管由偏微分方程耦合系统组成的典型两种系统已经得到了全面的研究,但研究正在从这种范式转向更现实的生物学模型。在这个项目中,我们的目标是探索这个基础模型的一些扩展,并朝着更现实的生物学模型迈进。我们已经确定了一些可能性,包括扩展到三个物种系统。这些还没有得到广泛的研究,并且很少甚至没有研究存在空间非均相反应动力学对这些系统的影响。这样的扩展不仅在数学上更有趣,更具挑战性,在生物学上更现实,而且有可能解释现有模型和生物学之间未解决的差异,例如形态原如何在模型预测的不同扩散率下在相同介质中是相似大小的物体。此外,这样的系统可能更有可能表现出亚临界分岔,这比超临界情况下的研究少,并且可能在鲁棒模式形成中发挥重要作用。这将非线性系统和数学生物学的研究领域联系起来。另一个新的研究途径是在发育生物学的背景下研究空间非定域性。非局部效应更常应用于生态学,但在细胞间尺度上,它们可用于描述在许多情况下对模式形成至关重要的长期细胞突出。例如,斑马鱼的黑色素细胞突起与黄素细胞相互作用,控制条纹的形成。另一个例子是脊髓神经元的分化模式,这是由神经元本身的突起调节的。利用非局域项的偏微分方程对此类系统进行建模和模拟,需要在数学分析和数值分析研究领域取得新的发展。进一步的可能性是研究与许多生物环境相关的层状域的反应扩散。最近的工作已经完成了系统的分离体和表面区域,调解的界面边界。表面层的存在和界面上的耦合极大地改变了图案形成行为,包括不稳定准则。有许多可能的扩展。其中一个重点是研究界面上不同输运函数的影响。这将纳入表面科学的研究领域,以促进生物学内部的理解。这个跨学科项目属于EPSRC广泛的数学科学主题。如上所述,它涵盖的研究领域包括数学生物学、非线性系统、数值分析、数学分析和表面科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Hydrodynamics-Reaction Kinetics耦合模型的厌氧膨胀床反应器三相流场数值模拟及生态-水力响应机制解析
- 批准号:51078108
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Long time dynamics and genealogies of stochastic reaction-diffusion systems
随机反应扩散系统的长时间动力学和系谱
- 批准号:
2348164 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Analysis of the effect of integral kernel shape on pattern formation in nonlocal reaction-diffusion equations
积分核形状对非局部反应扩散方程模式形成的影响分析
- 批准号:
23K13013 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
- 批准号:
23H00506 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: Reaction-Diffusion Kinetics with Tensor Networks
职业:张量网络的反应扩散动力学
- 批准号:
2239867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Behavior of nonstationary solutions to reaction-diffusion systems possessing continua of stationary solutions
具有连续稳定解的反应扩散系统的非平稳解的行为
- 批准号:
23K03176 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
- 批准号:
22K03369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of solution dynamics for time-fractional reaction-diffusion equations and systems
时间分数反应扩散方程和系统的解动力学分析
- 批准号:
22K13954 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonlinearity in Reaction-Diffusion and Kinetic Equations
反应扩散和动力学方程中的非线性
- 批准号:
2204615 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant