Computational neuroanatomy of aging using shape analysis
使用形状分析进行衰老的计算神经解剖学
基本信息
- 批准号:7082095
- 负责人:
- 金额:$ 31.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2009-03-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs diseaseagingbioimaging /biomedical imagingbiomarkerbrain imaging /visualization /scanningbrain mappingbrain morphologyclinical researchcomputational neurosciencediagnosis design /evaluationearly diagnosishuman datahuman old age (65+)image enhancementimage processingmagnetic resonance imagingmathematical modelmodel design /developmenttechnology /technique development
项目摘要
DESCRIPTION (provided by applicant):
The goal of this project is to continue and significantly expand our work on image analysis methods for brain magnetic resonance images, with emphasis on deformable registration and its application to morphometric analysis and spatial normalization of brain images in a longitudinal study of aging, and the use of these methods to develop an image-based early diagnostic tool for mild cognitive impairment and Alzheimer's Disease. Quantification of individual morphometric characteristics is achieved via a shape transformation, i.e. a spatial transformation that adapts a template of anatomy to the morphology of the individual under study. The shape transformation is a very detailed mathematical representation of anatomy, and is used for inter-individual comparisons and spatial normalization of structural and functional images. The overall goal of this project is to address three limitations of current technology, which are treated in the respective specific aims. Specifically we propose to 1) develop and validate a methodology for obtaining a rich image representation from MR images, which will allow for different brain regions to have distinctive morphological signatures, thereby facilitating automated algorithms for determining anatomically accurate shape transformations, 2) develop and validate a methodology for finding 4-dimensional shape transformations from longitudinal image data, with the fourth dimension representing time; this methodology will significantly reduce measurement error by incorporating temporal smoothness constrains into the estimation of the shape transformation at different time-points, 3) develop and validate a morphological representation based on the shape transformation of Aim 2, which will represent an individual's anatomy in terms of a shape transformation of an anatomical template, and a residual image that captures information that is not captured by the shape transformation, and 4) to apply these methods to the Baltimore Longitudinal Study of Aging, in order to test our hypothesis that sensitivity and specificity of early detection of cognitive decline using MR images will be significantly improved by the new technology, because of improved accuracy in morphologic measurements, and to develop a high-dimensionality image-based pattern classification method for early diagnosis of Alzheimer's Disease.
描述(由申请人提供):
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Davatzikos其他文献
Christos Davatzikos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Davatzikos', 18)}}的其他基金
Disentangling the anatomical, functional and clinical heterogeneity of major depression, using machine learning methods
使用机器学习方法解开重度抑郁症的解剖学、功能和临床异质性
- 批准号:
10714834 - 财政年份:2023
- 资助金额:
$ 31.73万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10625442 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Generalizable quantitative imaging and machine learning signatures in glioblastoma, for precision diagnostics and personalized treatment: the ReSPOND consortium
胶质母细胞瘤的通用定量成像和机器学习特征,用于精确诊断和个性化治疗:ReSPOND 联盟
- 批准号:
10421222 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10696100 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10263220 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Benchmarking and Comparing AD-Related AI Methods Across Sites on a Standardized Dataset
在标准化数据集上跨站点对 AD 相关 AI 方法进行基准测试和比较
- 批准号:
10825403 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10475286 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Ultrascale Machine Learning to Empower Discovery in Alzheimers Disease Biobanks
超大规模机器学习助力阿尔茨海默病生物库的发现
- 批准号:
10028746 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Machine Learning and Large-scale Imaging analytics for dimensional representations of brain trajectories in aging and preclinical Alzheimer's Disease: The brain aging chart and the iSTAGING consortium
机器学习和大规模成像分析,用于衰老和临床前阿尔茨海默氏病大脑轨迹的维度表示:大脑衰老图表和 iSTAGING 联盟
- 批准号:
10839623 - 财政年份:2017
- 资助金额:
$ 31.73万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 31.73万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 31.73万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 31.73万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 31.73万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10390278 - 财政年份:2021
- 资助金额:
$ 31.73万 - 项目类别:
Evaluating the role of the caregiver in the quality of life of people with Parkinson?s disease: opportunities for intervention
评估护理人员在帕金森病患者生活质量中的作用:干预机会
- 批准号:
10088327 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Evaluating the role of the caregiver in the quality of life of people with Parkinson?s disease: opportunities for intervention
评估护理人员在帕金森病患者生活质量中的作用:干预机会
- 批准号:
9907351 - 财政年份:2020
- 资助金额:
$ 31.73万 - 项目类别:
Dementia and hearing loss: Using preclinical models to uncover the mechanisms that accelerate cognitive decline in Alzheimer?s disease
痴呆和听力损失:利用临床前模型揭示加速阿尔茨海默病认知能力下降的机制
- 批准号:
429089 - 财政年份:2019
- 资助金额:
$ 31.73万 - 项目类别:
Studentship Programs
Thalamic Contributions to Functional Network Abnormalities in Alzheimer''s Disease
丘脑对阿尔茨海默病功能网络异常的贡献
- 批准号:
10415553 - 财政年份:2019
- 资助金额:
$ 31.73万 - 项目类别: