Cellular Surveillance and Degradation of Aberant tRNA
异常 tRNA 的细胞监视和降解
基本信息
- 批准号:7288599
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-01 至 2009-01-31
- 项目状态:已结题
- 来源:
- 关键词:DNA directed DNA polymeraseSaccharomyces cerevisiaeadenosinechemical stabilityenzyme activityfungal geneticsfungal proteinsgene mutationgenetic regulationhigh performance liquid chromatographyimmunoprecipitationnucleic acid metabolismnucleic acid sequenceposttranscriptional RNA processingsite directed mutagenesissmall nuclear RNAtransfer RNA
项目摘要
DESCRIPTION (provided by applicant): Transfer RNA serves to interpret the information in messenger RNA into proteins that conduct cellular activities. Remarkably, cellular tRNAs also play a role in priming RNA-directed DNA synthesis of several retroviral genomes, including HIV. Thus, elucidating the mechanisms of tRNA formation and function has implications for physiological and pathological forms of gene expression. Newly synthesized pre-tRNAs undergo extensive processing to become competent for nucleocytoplasmic transport and protein synthesis. Most tRNAs attain a similar tertiary structure that depends on a variety of intramolecular interactions and numerous modified nucleosides. This structure is critical for tRNA stability and function. To preserve the fidelity of protein synthesis, it would be beneficial for the cell to detect and eliminate aberrant tRNAs. A mechanism to degrade defective tRNAs has been described in E. coli, but nothing is known about the removal of aberrant tRNAs from eukaryotic cells. The yeast tRNA 1-methyladenosine (m1A) methyltransferase, is a two-subunit enzyme encoded by TRM6 and TRM61. In trm6 and trm61 mutants, m1A formation is blocked and tRNAi Met levels are diminished, suggesting that m1A is critical for tRNAi Met stability. Investigating the mechanism of instability and the role of m1A in tRNA turnover are the focus of this proposal. To identify cellular strategies for overcoming m1A deficiency, we isolated three suppressor genes (sup1-3) that restore tRNAi Met levels in the mutant trm6-504. From these observations and the identity of two of these genes, we have established that tRNAi Met lacking m1A is recognized adenylated and eliminated by the exosome in the nucleus. Whether all subunits of the exosome function equally in degrading hypomodified tRNAi Met will be assessed and the involvement of accessory components of the exosome will be tested. Our work will focus on uncovering the details of this tRNA degradation mechanism by assigning biochemical activities to proteins identified as integral components of the pathway. We will also ask if degradation is limited to hypomodified tRNAs or if other destabilized tRNAs or RNAs are susceptible to turnover in this pathway. This study will provide insight regarding the importance of mlA in tRNA metabolism and has provided tangible evidence of a novel cellular pathway for the surveillance oftRNA processing and the elimination of aberrant tRNAs from eukaryotic cells.
描述(由申请人提供):转移RNA用于将信使RNA中的信息解释为进行细胞活动的蛋白质。值得注意的是,细胞tRNA也在启动RNA指导的几种逆转录病毒基因组(包括HIV)的DNA合成中发挥作用。因此,阐明tRNA形成和功能的机制对基因表达的生理和病理形式具有意义。新合成的前体转运RNA经过广泛的加工,成为核质运输和蛋白质合成的能力。大多数tRNA具有相似的三级结构,这取决于多种分子内相互作用和许多修饰的核苷。这种结构对tRNA的稳定性和功能至关重要。为了保持蛋白质合成的保真度,细胞检测和消除异常的tRNA将是有益的。降解有缺陷的tRNA的机制已在E. coli中,但对从真核细胞中去除异常的tRNA一无所知。酵母tRNA 1-甲基腺苷(m1A)甲基转移酶是由TRM 6和TRM 61编码的双亚基酶。在trm 6和trm 61突变体中,m1A形成被阻断,tRNAi Met水平降低,表明m1A对tRNAi Met稳定性至关重要。研究不稳定性的机制和m1A在tRNA周转中的作用是该提案的重点。为了确定克服m1A缺陷的细胞策略,我们分离了三个抑制基因(sup 1 -3),恢复突变体trm 6 -504中的tRNAi Met水平。从这些观察结果和这些基因中的两个的身份,我们已经建立了缺乏m1A的tRNAi Met被识别为腺苷酸化并被细胞核中的外泌体消除。将评估外泌体的所有亚基是否在降解低修饰的tRNAi Met中同等地起作用,并将测试外泌体的辅助组分的参与。我们的工作将集中在揭示这种tRNA降解机制的细节,通过分配生化活性的蛋白质确定为途径的组成部分。我们还将询问降解是否仅限于低修饰的tRNA,或者其他不稳定的tRNA或RNA是否易于在该途径中周转。这项研究将提供有关mIA在tRNA代谢中的重要性的见解,并提供了切实的证据,一种新的细胞途径,用于监测tRNA加工和消除真核细胞中的异常tRNA。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES T ANDERSON其他文献
JAMES T ANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES T ANDERSON', 18)}}的其他基金
Molecular and biochemical probing of yeast, RNA surveillance complex TRAMP
酵母的分子和生化探测、RNA 监视复合物 TRAMP
- 批准号:
8367626 - 财政年份:2012
- 资助金额:
$ 1.22万 - 项目类别:
Cellular Surveillance and Degradation of Aberant tRNA
异常 tRNA 的细胞监视和降解
- 批准号:
7171543 - 财政年份:2005
- 资助金额:
$ 1.22万 - 项目类别:
Cellular Surveillance and Degradation of Aberant tRNA
异常 tRNA 的细胞监视和降解
- 批准号:
7341061 - 财政年份:2005
- 资助金额:
$ 1.22万 - 项目类别:
Cellular Surveillance and Degradation of Aberant tRNA
异常 tRNA 的细胞监视和降解
- 批准号:
7008609 - 财政年份:2005
- 资助金额:
$ 1.22万 - 项目类别:
Cellular Surveillance and Degradation of Aberant tRNA
异常 tRNA 的细胞监视和降解
- 批准号:
6869314 - 财政年份:2005
- 资助金额:
$ 1.22万 - 项目类别:
Mechanism of S. cerevisiae tRNA m1A methyltransferase
酿酒酵母 tRNA m1A 甲基转移酶的机制
- 批准号:
6664246 - 财政年份:2003
- 资助金额:
$ 1.22万 - 项目类别:
相似国自然基金
基于菌体蛋白泄漏探究超高压对酿酒酵母Saccharomyces cerevisiae烯醇化酶致敏性的影响
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
Saccharomyces cerevisiae NJWGYH30566产赤藓糖醇的辅酶工程及调控机理
- 批准号:31171644
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
3-甲硫基丙醇的Saccharomyces cerevisiae关键代谢分子调控机制研究
- 批准号:31071593
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
新疆慕萨莱思Saccharomyces cerevisiae发酵特性研究
- 批准号:31060223
- 批准年份:2010
- 资助金额:27.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Stress response mechanism regulated by the exonic promoter of Saccharomyces cerevisiae HKR1
酿酒酵母HKR1外显子启动子调控的应激反应机制
- 批准号:
23K04994 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Saccharomyces cerevisiae microtubule and kinetochore dynamics
酿酒酵母微管和动粒动力学
- 批准号:
10623066 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Regulation of lipid biosynthesis in Saccharomyces cerevisiae
酿酒酵母脂质生物合成的调控
- 批准号:
RGPIN-2021-02898 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual
Les paralogues RPS18A et RPS18B de la levure Saccharomyces cerevisiae
酿酒酵母旁系同源物 RPS18A 和 RPS18B
- 批准号:
572139-2022 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
University Undergraduate Student Research Awards
Genetic and biochemical analysis of the Hsp90 system in Saccharomyces cerevisiae
酿酒酵母 Hsp90 系统的遗传和生化分析
- 批准号:
RGPIN-2019-04967 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Discovery Grants Program - Individual
Dissecting the influence of genetic background on aneuploidy tolerance in the model eukaryote Saccharomyces cerevisiae
剖析遗传背景对模型真核生物酿酒酵母非整倍体耐受性的影响
- 批准号:
10667621 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Screening of the proteins involved in uptake of ubiquinone in Saccharomyces cerevisiae using synthetic ubiquinone probes
使用合成泛醌探针筛选酿酒酵母中参与泛醌摄取的蛋白质
- 批准号:
22H02273 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimisation d'un système d'échafaudage protéique pour améliorer l'orthogonalité et l'efficacité des circuits synthétiques dans Saccharomyces cerevisiae par la reconstruction de séquence ancestrale.
酿酒酵母电路合成技术的正交系统优化和效率优化
- 批准号:
569114-2022 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Unveiling the Role of EAF1 in the Regulation of Nuclear Flares and Lipid Synthesis in Saccharomyces cerevisiae.
揭示 EAF1 在酿酒酵母核耀斑和脂质合成调节中的作用。
- 批准号:
559745-2021 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral