Application of Machine Learning for the Development of the Next Generation of Membrane Material for Water Treatment Purposes.
应用机器学习开发下一代水处理膜材料。
基本信息
- 批准号:2749838
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
According to several reports, consequences of global warming and climate change including severe droughts, saltwater intrusion into groundwater, and shrinkage of glaciers, in addition to the increased water demand due to economic developments, fast urbanization, and population increase, have combined to result in an estimated 40% global water shortage by the year 2030. Hence, in addition to improvements in the conservation, distribution, and management of water resources, ensuring that new sources of fresh water can be readily available is essential in order to meet the increasing demand. As a result of its abundance, seawater desalination and wastewater treatment and reuse have been proposed as a solution to the problem of water deficit.Water treatment using membrane technologies is an attractive solution to water shortages since they consume little energy, operate efficiently, have a small footprint, and require little maintenance. Some of these solutions have been applied on an industrial scale including Reverse osmosis (RO), Nanofiltration (NF), Ultrafiltration (UF), Microfiltration (MF), Membrane distillation (MD), Electrodialysis, Forward osmosis (FO). Despite all the recent progress in this field, serious issues remain unaddressed yet. High energy requirement and fouling in RO membranes, concentration polarization, and reverse solute flux (RSF) for FO are among these. It is possible to alleviate the effect of some of the mentioned issues by optimizing the process parameters and conditions; however, some of them such as internal concentration polarization are intrinsic to the membrane itself and the limitations imposed by the membrane material. Consequently, in order to further improve the performance of such membranes it is necessary to consider different materials for membrane synthesis to overcome the current functional limitations. Although the idea of applying different combinations of polymers for membrane synthesis seems feasible it could be a rather long, tedious, and expensive process and there would always be the possibility of overlooking eligible candidates due to limited time and resources.Recently, A number of machine learning (ML) techniques, such as response surface methodologies (RSMs) and artificial neural networks (ANNs), have been increasingly applied to optimize process parameters as well as to predict, simulate, and/or model inputs and outputs. In machine learning, computational algorithms are used to develop these models based on data. It is possible to analyze the relationships between input variables and output variables using a learning mechanism, rather than using mathematical model equations, and to predict complex non-linear systems with high precision using this method. While most studies have focused on the optimization of processes by modifying operating conditions, to this date there are no comprehensive studies investigating the effect of the application of different membrane materials and polymers on the performance of the system.This study would aim to investigate the possible developments in membrane fabrication and material in order to overcome the limitations imposed on the membrane water treatment process performance due to the intrinsic characteristics of membranes. In this regard, a comprehensive database of different membranes used will be implemented to train the algorithm, and later on, simulations will be carried out to predict the performance of various possible combinations of material when used as a membrane. This process can significantly reduce the amount of time and resources related to testing all the candidate material in the laboratory and shortlisting the ones with desired performance. In the next step, potential candidates with noticeable performance regarding CP, fouling, rejection rate, water recovery rate, etc. will be fabricated and tested in real conditions to validate the simulation results.
根据多份报告,全球变暖和气候变化的后果,包括严重干旱、盐水侵入地下水和冰川萎缩,以及经济发展、快速城市化和人口增长导致的水需求增加,预计到2030年全球缺水率将达到40%。因此,除了改善水资源的保护、分配和管理外,确保新的淡水来源随时可用也是满足日益增长的需求的关键。由于其丰富的资源,海水淡化和废水处理及回用已被提议作为解决水资源短缺问题的一种方案。使用膜技术进行水处理是解决水资源短缺的一种有吸引力的解决方案,因为它们消耗很少的能源,运行效率高,占地面积小,几乎不需要维护。这些解决方案中的一些已经在工业规模上应用,包括反渗透(RO)、纳滤(NF)、超滤(UF)、微滤(MF)、膜蒸馏(MD)、电渗析、正渗透(FO)。尽管最近在这一领域取得了所有进展,但严重的问题仍未得到解决。其中包括RO膜的高能量需求和污染、浓差极化和FO的反向溶质通量(RSF)。可以通过优化工艺参数和条件来缓解上述问题中的一些问题的影响;然而,其中一些问题(例如内部浓差极化)是膜本身固有的,并且受到膜材料的限制。因此,为了进一步改善这种膜的性能,有必要考虑用于膜合成的不同材料以克服当前的功能限制。尽管将不同聚合物组合应用于膜合成的想法似乎是可行的,但其可能是相当长、繁琐和昂贵的过程,并且由于时间和资源有限,总是存在忽略合格候选物的可能性。已经越来越多地应用于优化工艺参数以及预测、模拟和/或建模输入和输出。在机器学习中,计算算法用于基于数据开发这些模型。它可以使用学习机制来分析输入变量和输出变量之间的关系,而不是使用数学模型方程,并使用该方法以高精度预测复杂的非线性系统。虽然大多数研究都集中在通过改变操作条件来优化工艺,迄今为止,还没有全面的研究调查不同膜材料和聚合物的应用对系统性能的影响。本研究的目的是调查膜制造和材料的可能发展,以克服膜水处理工艺性能的限制,膜的固有特性。在这方面,将实施所使用的不同膜的综合数据库来训练算法,随后将进行模拟以预测用作膜时各种可能的材料组合的性能。该过程可以显著减少与在实验室中测试所有候选材料并将具有期望性能的材料列入短名单相关的时间和资源量。在下一步中,将在真实的条件下制造和测试在CP、污垢、截留率、水回收率等方面具有显著性能的潜在候选物,以验证模拟结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
- 批准号:
2420029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
- 批准号:
23K24856 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
- 批准号:
22KJ1964 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
- 批准号:
2244976 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Application of machine learning to condensed matter physics
机器学习在凝聚态物理中的应用
- 批准号:
2904795 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization
考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用
- 批准号:
2885828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Application to machine learning using discomfort detected by EEG as a feedback index
以脑电图检测到的不适作为反馈指标在机器学习中的应用
- 批准号:
23K11209 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine-learning based bias correction of atmospheric chemistry simulations and its application to photochemical air pollution analysis
基于机器学习的大气化学模拟偏差校正及其在光化学空气污染分析中的应用
- 批准号:
23K11411 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of machine learning to genomic selection of dairy cattle through improved feed efficiency complex prediction
通过提高饲料效率综合预测,将机器学习应用于奶牛基因组选择
- 批准号:
2887069 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship