3D Probabilistic Profiles of Protein/Peptide Interactions

蛋白质/肽相互作用的 3D 概率图

基本信息

  • 批准号:
    7051878
  • 负责人:
  • 金额:
    $ 10.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Peptides play a decisive role in many physiological processes and as a result are playing an increasing role in the development of vaccines and peptide, peptidomimetic, and small-molecule drugs. Because of an explosion of functional and structural-genomic data, there is an urgent need for new methods to analyze and predict peptide-protein interactions, to allow this data to be effectively distilled into drugs and vaccines. In this proposal, we describe a new solution to this problem, through development of a new approach to describe and predict peptide-protein interactions for structurally solved proteins using Markov Random Fields (MRF). Free energy minimization of the MRF yields a probability distribution called a 3D probabilistic peptide profile or 3D profile. The 3D profile probabilistically specifies types, locations, orientations, and conformations of amino acids within active sites that can be connected to form energetically favorable, preferably long, polypeptide chains. 3D profiles can then be used to (a) recognize peptides that will bind, or to (b) generate optimized combinatorial libraries of peptides for testing. MRF models incorporate detailed energetic information and can incorporate prior knowledge on the target system including (i) sequences of peptides known to bind; (ii) structurally determined peptide/protein complexes; (iii) protein active site mutagenic information; and (iv) NMR-derived distance constraints. Multiple MRF models can be combined to account for protein flexibility. MRF models are created by initially positioning amino-acid probes into a fine grid in the active site. Fast Belief Propagation methods then minimize the internal MRF free energy, by optimizing beliefs for specific amino acids at specific active site positions while adjusting their positions and orientations. Final peptide conformations and libraries are obtained by marginalizing the profile. The MRF approach is novel and has significant principled advantages over existing methods that docking individual peptides to a target. A robust software prototype has been implemented; initial results are given for a PDZ domain. In Phase I, we will complete the prototype and apply it to SH2/SH3 domains, PDZ domains, and MHC l/ll domains. In Phase II, we will optimize and utilize the methods to tackle problems of pharmaceutical and biodefense interest that may include development of substrate-competitive inhibitors to kinases or inhibitors of YopH, a Yersinia Pestis protein tyrosine phosphatase.
描述(由申请人提供):肽在许多生理过程中发挥决定性作用,因此在疫苗和肽、肽模拟物和小分子药物的开发中发挥越来越大的作用。由于功能和结构基因组数据的爆炸,迫切需要新的方法来分析和预测肽-蛋白质相互作用,以使这些数据能够有效地提取到药物和疫苗中。在这个建议中,我们描述了一个新的解决方案,这个问题,通过开发一种新的方法来描述和预测结构解决蛋白质的肽-蛋白质相互作用,使用马尔可夫随机场(MRF)。MRF的自由能最小化产生称为3D概率肽谱或3D谱的概率分布。3D图谱概率性地指定活性位点内的氨基酸的类型、位置、取向和构象,所述活性位点可以连接以形成能量上有利的优选长的多肽链。3D图谱然后可用于(a)识别将结合的肽,或(B)产生用于测试的肽的优化组合文库。MRF模型包含详细的能量信息,并且可以包含关于靶系统的先验知识,包括(i)已知结合的肽序列;(ii)结构确定的肽/蛋白质复合物;(iii)蛋白质活性位点诱变信息;以及(iv)NMR衍生的距离约束。可以组合多个MRF模型来考虑蛋白质的灵活性。MRF模型是通过最初将氨基酸探针定位到活性位点的细网格中来创建的。快速信念传播方法,然后最大限度地减少内部MRF自由能,通过优化信念的特定氨基酸在特定的活性位点的位置,同时调整其位置和方向。最终的肽构象和文库是通过边缘化的配置文件。MRF方法是新颖的,并且与将单个肽对接到靶标的现有方法相比具有显著的原则性优势。一个强大的软件原型已经实施,初步结果给出了PDZ域。在第一阶段,我们将完成原型并将其应用于SH 2/SH 3结构域、PDZ结构域和MHC I/II结构域。在第二阶段,我们将优化和利用这些方法来解决制药和生物防御方面的问题,其中可能包括开发底物竞争性激酶抑制剂或YopH(鼠疫耶尔森氏菌蛋白酪氨酸磷酸酶)抑制剂。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RICHARD Masten FINE其他文献

RICHARD Masten FINE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RICHARD Masten FINE', 18)}}的其他基金

A Novel Probabilistic Engine for Virtual Screening
用于虚拟筛选的新型概率引擎
  • 批准号:
    6786885
  • 财政年份:
    2004
  • 资助金额:
    $ 10.69万
  • 项目类别:
Learning Drug Specifity in Protein Families by Docking
通过对接学习蛋白质家族中的药物特异性
  • 批准号:
    6798336
  • 财政年份:
    2000
  • 资助金额:
    $ 10.69万
  • 项目类别:
Learning Drug Specificity in Protein Families by Docking
通过对接学习蛋白质家族中的药物特异性
  • 批准号:
    6692482
  • 财政年份:
    2000
  • 资助金额:
    $ 10.69万
  • 项目类别:
LEARNING DRUG SPECIFICITY FROM PROTEIN FAMILIES
从蛋白质家族中了解药物特异性
  • 批准号:
    6143503
  • 财政年份:
    2000
  • 资助金额:
    $ 10.69万
  • 项目类别:
FAST PDB SEARCHES FOR BIOCHEMICALLY SIMILAR SURFACES
快速 PDB 搜索生物化学相似的表面
  • 批准号:
    2332123
  • 财政年份:
    1998
  • 资助金额:
    $ 10.69万
  • 项目类别:
PROTEIN SURFACE DATABASE WITH FAST QUERIES FOR HOMOLOGY
具有快速同源性查询的蛋白质表面数据库
  • 批准号:
    2794836
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
FAST PDB SEARCHES FOR BIOCHEMICALLY SIMILAR SURFACES
快速 PDB 搜索生物化学相似的表面
  • 批准号:
    2023655
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
PROTEIN SURFACE DATABASE W/ FAST QUERIES FOR HOMOLOGY
具有快速同源查询功能的蛋白质表面数据库
  • 批准号:
    6151066
  • 财政年份:
    1996
  • 资助金额:
    $ 10.69万
  • 项目类别:
COMPUTER SIMULATION METHOD FOR CALCULATING FREE ENERGY
计算自由能的计算机模拟方法
  • 批准号:
    3498602
  • 财政年份:
    1991
  • 资助金额:
    $ 10.69万
  • 项目类别:

相似海外基金

Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
  • 批准号:
    24K15172
  • 财政年份:
    2024
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
  • 批准号:
    23K04928
  • 财政年份:
    2023
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 10.69万
  • 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
  • 批准号:
    573688-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 10.69万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10704557
  • 财政年份:
    2022
  • 资助金额:
    $ 10.69万
  • 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10537846
  • 财政年份:
    2022
  • 资助金额:
    $ 10.69万
  • 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
  • 批准号:
    2753921
  • 财政年份:
    2022
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
  • 批准号:
    10328140
  • 财政年份:
    2022
  • 资助金额:
    $ 10.69万
  • 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
  • 批准号:
    10621368
  • 财政年份:
    2021
  • 资助金额:
    $ 10.69万
  • 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
  • 批准号:
    2111821
  • 财政年份:
    2021
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了