Machine learning methods for the human microbiome
人类微生物组的机器学习方法
基本信息
- 批准号:2750395
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Therapeutic diets such as exclusive enteral nutrition for Crohn's disease can provide very effective treatments. However, they do not work for all individuals in all cases. The impact of these diets will be mediated through the gut microbiome, a diverse community of microbes involved in many aspects of gut metabolism but also inflammation through interaction with the immune system. The microbiome varies from one individual to another even in healthy individuals but exhibits substantially more variability in people suffering from IBD. It is highly likely therefore, that this variability impacts treatment efficacy.Cross-sectional studies have shown some organisms to be elevated or decreased in abundance in irritable bowel diseases (IBDs) such as Crohn's. However, these are purely associative observations. Longitudinal studies where patients are followed during treatment have far more statistical power. We will exploit a number of large-scale longitudinal data sets from dietary treatments of Crohn's disease that combine both metagenomics data which reveals the functional capacity of the microbiome together with metabolomics that measures small molecule concentrations produced either through the host or microbial metabolism. Coupling metabolomics with metagenomics has great potential to shift current microbiome research towards understanding community functions and interactions with the host. Previous studies analysed individual 'omics data, with many powerful bioinformatics tools developed over the past decade to enable metabolome and microbiome profiling. On the other hand, multi-omics data integration and interpretation is still a problem to be solved. The latter integration requires the deployment of advanced machine learning and statistical algorithms that leverage multiple heterogeneous, yet interconnected, data sources and that scale on large and high-dimensional datasets. Through the development and application of machine learning approaches we will quantify the importance of the initial host microbiome on treatment outcome but also the extent to which the metabolome under a controlled diet is determined by the patient microbiome. These machine learning methods will be combined with statistical modelling of the metabolic pathways in the gut, fitted to both 'omics data sources using approximate Bayesian methods on networks such as variational inference or expectation-propagation. From these we will infer which metabolic pathways are both microbially mediated and important for treatment. The development of these models will be aided by bench-top experiments generating longitudinal 'omics data sets from applying dietary perturbations to communities generated from patient and control fecal inocula in the artificial colon systems at the Quadram Institute.
治疗性饮食,如克罗恩病的肠内营养,可以提供非常有效的治疗。然而,它们并不是在所有情况下对所有人都有效。这些饮食的影响将通过肠道微生物组来介导,肠道微生物组是一个参与肠道代谢许多方面的微生物群落,但也通过与免疫系统的相互作用来介导炎症。即使在健康个体中,微生物组也因个体而异,但在IBD患者中表现出更大的变异性。因此,这种变异性很可能会影响治疗效果。横断面研究表明,在肠易激疾病(IBD)如克罗恩病中,某些微生物的丰度会升高或降低。然而,这些都是纯粹的联想观察。在治疗期间跟踪患者的纵向研究具有更大的统计功效。我们将利用大量来自克罗恩病饮食治疗的大规模纵向数据集,这些数据集将揭示微生物组功能能力的宏基因组学数据与测量通过宿主或微生物代谢产生的小分子浓度的代谢组学数据联合收割机结合起来。代谢组学与宏基因组学的结合具有巨大的潜力,可以将当前的微生物组研究转向了解群落功能和与宿主的相互作用。以前的研究分析了个体的组学数据,在过去十年中开发了许多强大的生物信息学工具,以实现代谢组学和微生物组学分析。另一方面,多组学数据的整合和解释仍然是一个有待解决的问题。后一种集成需要部署先进的机器学习和统计算法,这些算法利用多个异构但相互关联的数据源,并在大型和高维数据集上扩展。通过机器学习方法的开发和应用,我们将量化初始宿主微生物组对治疗结果的重要性,以及受控饮食下代谢组由患者微生物组决定的程度。这些机器学习方法将与肠道代谢途径的统计建模相结合,使用网络上的近似贝叶斯方法(如变分推理或期望传播)拟合两种组学数据源。从这些,我们将推断哪些代谢途径是微生物介导的和重要的治疗。这些模型的开发将得到台式实验的帮助,这些实验通过将饮食扰动应用于Quadram研究所人工结肠系统中的患者和对照粪便接种物产生的群落来产生纵向组学数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
- 批准号:
MR/X033880/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
- 批准号:
10979324 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
- 批准号:
2343135 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
- 批准号:
10732745 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




