Measurement Models in Latent Curve Analysis

潜伏曲线分析中的测量模型

基本信息

  • 批准号:
    7093589
  • 负责人:
  • 金额:
    $ 28.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2009-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In our first project period we focused on the systematic study of longitudinal latent curve models (LCMs) applied to continuous scale scores with a particular emphasis on challenges that commonly arise in the empirical study of substance use. Despite the many advantages of these LCMs, one limitation is that methods are currently not well developed to fit LCMs to repeated measures that are ordinally scaled, particularly in the presence of missing data. A second limitation stems from the potential violation of a strict set of required assumptions governing the structure of the measurement model of continuous or ordinally observed scale scores over time. To address these limitations, we have drawn upon our findings from the initial project period and have designed the revision of our proposed continuation project around the systematic study of measurement models in latent curve analysis. Our proposed project is organized around four specific aims. In Aim 1 we propose to study existing challenges and identify optimal strategies for fitting LCMs to ordinal manifest scale scores assessed overtime both with complete and missing data. In Aim 2 we plan to study the incorporation of latent factors with continuously scaled indicators in LCMs to allow for tests of measurement invariance and the inclusion of formal measurement models. In Aim 3 we propose extending the findings of Aim 2 to include the incorporation of latent factors with ordinally scaled indicators in LCMs. Finally, in Aim 4 we plan to study the implications of item scaling and measurement invariance across all prior aims with respect to the estimation of statistical power and optimal study design. These project goals will be pursued through the integrated use of analytical review and organization, computer simulation studies, and the analysis of data drawn from an existing longitudinal study of the parental alcoholism effects on the development of drug use in a large sample of adolescent. Taken together, we believe the proposed study has the potential for making significant unique contributions to the field of quantitative methodology and to the rigorous empirical study of developmental trajectories of substance use and abuse.
描述(由申请人提供):在我们的第一个项目期间,我们专注于应用于连续量表评分的纵向潜伏曲线模型的系统研究,特别强调在物质使用的实证研究中通常出现的挑战。尽管这些LCMS有许多优点,但一个局限性是,目前还没有很好地开发方法来使LCMS适应按顺序标度的重复测量,特别是在存在缺失数据的情况下。第二个限制源于可能违反了一套严格的必要假设,这些假设支配着随着时间的推移连续或按顺序观察的量表分数的测量模型的结构。为了解决这些局限性,我们借鉴了最初项目阶段的发现,并围绕潜在曲线分析中测量模型的系统研究设计了拟议的延续项目的修订。我们提议的项目围绕四个具体目标组织。在目标1中,我们建议研究现有的挑战,并确定最优策略,以便将LCMS与经过加班评估的完整和缺失数据的顺序清单评分相适应。在目标2中,我们计划研究将潜在因素与连续缩放的指标结合在一起,以允许对测量不变性进行测试并纳入正式的测量模型。在目标3中,我们建议扩大目标2的调查结果,将潜在因素与按顺序标度的指标纳入最低成本管理。最后,在目标4中,我们计划研究项目比例和所有先前目标的测量不变性对统计能力的估计和最优研究设计的影响。这些项目目标将通过综合使用分析性审查和组织、计算机模拟研究和分析现有的关于父母酗酒对青少年吸毒发展的影响的纵向研究的数据来实现。综上所述,我们认为拟议的研究有可能对定量方法领域和对药物使用和滥用的发展轨迹的严格实证研究做出重大而独特的贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PATRICK J CURRAN其他文献

PATRICK J CURRAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PATRICK J CURRAN', 18)}}的其他基金

Modeling the Impact of Group Membership Turnover in Ecologically-Valid Tx Trials
在生态有效的 Tx 试验中对团体成员流动的影响进行建模
  • 批准号:
    8092677
  • 财政年份:
    2008
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    8013536
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    7582783
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    8298765
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    8068597
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    7762205
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
Internalizing pathways to drug use: A multi-sample analysis
药物使用的内化途径:多样本分析
  • 批准号:
    8211058
  • 财政年份:
    2002
  • 资助金额:
    $ 28.04万
  • 项目类别:
INNOVATIVE LATENT CURVE MODELS OF ADOLESCENT DRUG USE
青少年药物使用的创新潜曲线模型
  • 批准号:
    6515749
  • 财政年份:
    1999
  • 资助金额:
    $ 28.04万
  • 项目类别:
Measurement Models in Latent Curve Analysis
潜伏曲线分析中的测量模型
  • 批准号:
    6976706
  • 财政年份:
    1999
  • 资助金额:
    $ 28.04万
  • 项目类别:
INNOVATIVE LATENT CURVE MODELS OF ADOLESCENT DRUG USE
青少年药物使用的创新潜曲线模型
  • 批准号:
    6379008
  • 财政年份:
    1999
  • 资助金额:
    $ 28.04万
  • 项目类别:

相似海外基金

Construction of a learning support system through learning behavior prediction using student modeling
使用学生建模通过学习行为预测构建学习支持系统
  • 批准号:
    23K17604
  • 财政年份:
    2023
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of Service Process Measurement System based on Behavior Prediction in Nursing-care Service
基于行为预测的护理服务过程测量系统开发
  • 批准号:
    22K12286
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
  • 批准号:
    2219866
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1C: Privacy-preserving IoT Analytics and Behavior Prediction on Network Edge
合作研究:IMR:MM-1C:网络边缘上的隐私保护物联网分析和行为预测
  • 批准号:
    2219867
  • 财政年份:
    2022
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Object State Change Detection and Human Behavior Prediction Focused on Hand Manipulation
专注于手部操作的物体状态变化检测和人类行为预测
  • 批准号:
    21J11626
  • 财政年份:
    2021
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955365
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955404
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Behavior Prediction of Traffic Participants based on Micro and Macro features for Urban Automated Driving
城市自动驾驶基于微观和宏观特征的交通参与者行为预测
  • 批准号:
    20K04397
  • 财政年份:
    2020
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Towards Fatigue Behavior Prediction of Structural Materials through Computationally-Informed Textural and Microstructural Characteristics
职业:通过计算信息的纹理和微观结构特征预测结构材料的疲劳行为
  • 批准号:
    1751591
  • 财政年份:
    2018
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Standard Grant
Research on Behavior Prediction of Cylindrical Line Structure with Rotation in Flow
流动中旋转圆柱线结构行为预测研究
  • 批准号:
    18H01634
  • 财政年份:
    2018
  • 资助金额:
    $ 28.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了