VON WILLEBRAND FACTOR STRUCTURE AND FUNCTION UNDER FLUID FLOW

流体流动下的冯维勒布兰德因子结构和功能

基本信息

项目摘要

DESCRIPTION (provided by applicant): In models of vascular injury, the engagement of blood platelets by substrate-immobilized von Willebrand Factor (vWF) under fluid flow leads to platelet activation and subsequent thrombus formation. Experiments carried out in suspension assays that apply fluid forces on platelets and blood proteins also demonstrate that mechanical forces cause changes in platelet membrane phospholipid distribution, and they augment shear-induced platelet activation and aggregation. In our recent studies on platelet activation, we proposed a two-step mechanism of cell activation to explain these observations based on the relative roles of platelet receptor Gplb, plasma vWF and fluid forces. As opposed to traditional scaling arguments, we developed rigorous computational methods to estimate the magnitude and nature of fluid forces applied on cells and molecules under these conditions. Further, we observed that vWF undergoes self-association or aggregation when mixed under defined conditions. This suggests that protein conformation may change under fluid shear flow and this may have functional consequences. Based on these observations, the specific goals of this project are: 1) To determine the physiological fluid shear conditions under which vWF unimers may self-associate. For this aspect, light scattering, chromatography, western blot analysis and surface plasmon resonance are employed to detect vWF self-association, and to determine the kinetics/affinity of this process. Studies of shear- induced platelet activation are also conducted to establish a mechanistic link between vWF self- association and platelet activation. 2) To demonstrate that the size of the vWF molecule and length of platelet Gplb receptor are critical parameters regulating platelet activation rates under fluid shear. In order to do this, we create microspheres and nanoparticles of varying sizes bearing immobilized antibodies and recombinant forms of vWF at varying densities. The ability of these particles to bind and activate cells is quantified. 3) To characterize conformational changes in vWF under physiological fluid shear conditions. Here, the solution structure of vWF and protein conformational changes under fluid shear are measured using light, neutron and X-ray scattering spectroscopy. New mathematical theories are developed to quantitatively guide the interpretation of the above experiments. Successful completion of this work will establish that fluid shear may regulate bio-molecule structure and function. Results linking self-association and platelet activation, in the long run, may also prompt in vivo examination of this phenomenon and stimulate new drug development against self-association.
描述(由申请方提供):在血管损伤模型中,在流体流动下,血小板与基质固定的血管性血友病因子(vWF)的结合导致血小板活化和随后的血栓形成。在对血小板和血蛋白施加流体力的悬浮液测定中进行的实验也证明,机械力引起血小板膜磷脂分布的变化,并且它们增强剪切诱导的血小板活化和聚集。在我们最近对血小板活化的研究中,我们提出了一个两步细胞活化机制来解释这些观察结果的基础上血小板受体Gplb,血浆vWF和流体力的相对作用。与传统的缩放参数相反,我们开发了严格的计算方法来估计在这些条件下施加在细胞和分子上的流体力的大小和性质。此外,我们观察到,vWF经历自缔合或聚集时,在规定的条件下混合。这表明,蛋白质构象可能会改变流体剪切流动下,这可能有功能的后果。基于这些观察,本项目的具体目标是:1)确定vWF单聚体可能自缔合的生理流体剪切条件。对于这一方面,采用光散射、色谱法、蛋白质印迹分析和表面等离子体共振来检测vWF自缔合,并确定该过程的动力学/亲和力。剪切诱导的血小板活化的研究也进行了建立一个机制之间的联系vWF的自我协会和血小板活化。2)证明vWF分子的大小和血小板Gplb受体的长度是在流体剪切下调节血小板活化率的关键参数。为了做到这一点,我们创造了不同大小的微球和纳米颗粒,它们以不同的密度携带固定化抗体和重组形式的vWF。定量这些颗粒结合和活化细胞的能力。3)表征生理流体剪切条件下vWF的构象变化。在这里,溶液结构的vWF和蛋白质的构象变化下流体剪切测量使用光,中子和X-射线散射光谱。新的数学理论的发展,定量地指导上述实验的解释。这项工作的成功完成将建立流体剪切可以调节生物分子的结构和功能。从长远来看,将自缔合和血小板活化联系起来的结果也可能促使对这种现象进行体内检查,并刺激针对自缔合的新药开发。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SRIRAM NEELAMEGHAM其他文献

SRIRAM NEELAMEGHAM的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SRIRAM NEELAMEGHAM', 18)}}的其他基金

Application of machine/deep-learning to the systems biology of glycosylation
机器/深度学习在糖基化系统生物学中的应用
  • 批准号:
    10594074
  • 财政年份:
    2022
  • 资助金额:
    $ 37.03万
  • 项目类别:
Engineering of glycosyltransferases to obtain glycan binding proteins
糖基转移酶工程以获得聚糖结合蛋白
  • 批准号:
    10259786
  • 财政年份:
    2020
  • 资助金额:
    $ 37.03万
  • 项目类别:
High content glycomics analysis using next generation sequencing technology
使用下一代测序技术进行高内涵糖组学分析
  • 批准号:
    9924616
  • 财政年份:
    2019
  • 资助金额:
    $ 37.03万
  • 项目类别:
High content glycomics analysis using next generation sequencing technology
使用下一代测序技术进行高内涵糖组学分析
  • 批准号:
    9765667
  • 财政年份:
    2019
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    8327859
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    10558673
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    8145434
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    8885874
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    8521357
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:
Systems Biology of Glycosylation
糖基化的系统生物学
  • 批准号:
    10374428
  • 财政年份:
    2011
  • 资助金额:
    $ 37.03万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.03万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.03万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.03万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 37.03万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 37.03万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 37.03万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 37.03万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 37.03万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 37.03万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 37.03万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了