Application of machine/deep-learning to the systems biology of glycosylation
机器/深度学习在糖基化系统生物学中的应用
基本信息
- 批准号:10594074
- 负责人:
- 金额:$ 31.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnabolismBasic ScienceBindingBiochemicalBioinformaticsBiological AssayBlood CellsCRISPR/Cas technologyCell Differentiation processCell LineCell surfaceCellsClinical TrialsColorComplementComputing MethodologiesDataData AnalysesData CollectionData ProvenanceData SetDimensionsDropoutEngineeringEnsureEpigenetic ProcessEtiologyExperimental DesignsFlow CytometryFundingGene ExpressionGeneticGoalsGrantGraphGuide RNAHumanHuman BioMolecular Atlas ProgramIndividualKnock-outKnowledgeLabelLearningLectinLibrariesLinkMachine LearningMapsMass Spectrum AnalysisMeasurementMeasuresMetadataMethodsModalityModelingMultiomic DataNational Heart, Lung, and Blood InstituteNatureNetwork-basedNeural Network SimulationOntologyOutputPathway interactionsPatternPhysiologyPolysaccharidesPopulationPreparationProcessProteinsPythonsQuality ControlReactionReadinessRegulatory PathwayReportingResearch PersonnelRoleSignaling MoleculeSource CodeStimulusStructureSupervisionSystemSystems BiologyTestingTimeTranscriptWorkbasebiological heterogeneitycell typecomputerized data processingdata integrationdata standardsdeep learningdeep learning modelexperimental studyfrontiergenetic signaturegenomic platformglycosylationgraph neural networkhuman datahuman diseaseinteroperabilityloss of functionmacrophagemathematical methodsmodel buildingmonocytemultiple omicsnext generation sequencingnovelparent grantpatient stratificationprecision medicinepreservationpublic repositoryresponsesingle cell analysistranscriptome
项目摘要
The NHLBI grant “Systems Biology of Glycosylation” aims to apply biomolecular engineering approaches to
study blood cell glycosylation from both a basic science and translational perspective. The goal is to develop a
quantitative link between the cellular transcriptome and epigenetic status, with the resulting glycosylation profile.
A portion of the grant is focused on discovering the cellular regulatory pathways in blood cells that control the
pattern of glycosylation on these cells, and assessing the extent to which these principles are generalizable. In
a second aspect, using this new knowledge, we determine if measuring selected genetic signatures can report
on the glycosylation status of cells. The identification of these key makers/checkpoints has translational
significance as it can inform both patient stratification in the context of clinical trials and precision medicine
applications. In order to achieve these objectives, two types of perturbation experiments are performed using
different blood cells. In the first, CRISPR-Cas9/gRNA is used to implement defined system perturbations and
resulting changes in the cellular glycome are measured. This represents the ‘labeled dataset’ from the Machine
Learning/Deep Learning (ML/DL) perspective. In the second, biochemical stimuli are applied to perturb cell state,
and again cell glycosylation status measurements are made. This is the ’unlabeled dataset’ as the perturbation
is imprecise. In each case several experimental outputs or ‘features’ are measured including: 1) Single-cell next-
generation sequencing (NGS) for the simultaneous quantitation of the underlying transcriptome, nature of gRNA
(guide-RNA) perturbation and glycosylation status (using lectin binding), on individual cells. 2) Spectral flow
cytometry to measure fluorescent lectin binding in larger scale, with the option that selected rare cell types could
be sorted for more in-depth profiling. 3) Mass spectrometry to obtain detailed glycan structure data. Mathematical
methods are developed to fuse results from these different omics-methods and develop input-output responses.
Currently, such modeling relies on prior biochemical knowledge that is curated in pathway maps, linear-mixed
models and explicit programming. As an alternative to this traditional approach, this supplement will prepare the
data for ML/DL modeling and related learning. To achieve this, we add two new expert investigators to this
project: Gunawan (systems biology, single-cell analysis) and Chen (machine/deep learning). The specific aims
will: 1) Collect sufficient data for ML/DL; 2) Normalize and standardize these data for ML/DL readiness; and 3)
Use the transformed data in pilot ML/DL tests. Successful project completion will confirm the value of ML/DL in
the study of blood cell and Glycoscience applications. To our best knowledge, this would represent the first
application of ML/DL to multi-omics Glycosciences. A comparison with traditional modeling methods that are
already supported in the funded application, will tell us about the merits and limitations of ML/DL. Finally, a
general ML/DL data processing framework will emerge that can be applied to other aspects of this project and
also other related biomedical problems.
NHLBI资助“糖基化系统生物学”旨在将生物分子工程方法应用于
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SRIRAM NEELAMEGHAM其他文献
SRIRAM NEELAMEGHAM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SRIRAM NEELAMEGHAM', 18)}}的其他基金
Engineering of glycosyltransferases to obtain glycan binding proteins
糖基转移酶工程以获得聚糖结合蛋白
- 批准号:
10259786 - 财政年份:2020
- 资助金额:
$ 31.9万 - 项目类别:
High content glycomics analysis using next generation sequencing technology
使用下一代测序技术进行高内涵糖组学分析
- 批准号:
9924616 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
High content glycomics analysis using next generation sequencing technology
使用下一代测序技术进行高内涵糖组学分析
- 批准号:
9765667 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
相似海外基金
HNDS-R: Connectivity, Inclusiveness, and the Permeability of Basic Science
HNDS-R:基础科学的连通性、包容性和渗透性
- 批准号:
2318404 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Advancing the basic science of membrane permeability in macrocyclic peptides
推进大环肽膜渗透性的基础科学
- 批准号:
10552484 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Bringing together communities and basic science researchers to build stronger relationships
将社区和基础科学研究人员聚集在一起,建立更牢固的关系
- 批准号:
480914 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Miscellaneous Programs
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Australian Laureate Fellowships
Developing science communication on large scale basic science represented by accelerator science
发展以加速器科学为代表的大规模基础科学科学传播
- 批准号:
22K02974 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coordinating and Data Management Center for Translational and Basic Science Research in Early Lesions
早期病变转化和基础科学研究协调和数据管理中心
- 批准号:
10517004 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Basic Science Core - Biosafety & Biocontainment Core (BBC)
基础科学核心 - 生物安全
- 批准号:
10431468 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别: