Spatial Integration of V1 Horizontal Disparity Signals
V1 水平视差信号的空间积分
基本信息
- 批准号:7276424
- 负责人:
- 金额:$ 4.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-03-01 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAreaBrainCellsComplexDepthDepth PerceptionEyeFire - disastersGoalsImageLeftMeasuresMotivationNeuronsObject AttachmentPatternPlayProcessPropertyRateRelative (related person)RoleSignal TransductionStagingStimulusSurfaceTestingTimeTrainingVisual system structurearea striatabaseextrastriateneuromechanismneuropathologyorientation columnsorientation selectivityspatial integrationtwo-dimensionalvisual processvisual processing
项目摘要
DESCRIPTION (provided by applicant): We will test the hypothesis that the visual system matches features between the left- and right-eye images using cooperative processing among neurons in primary visual cortex that respond specifically to horizontal disparities between these images. Effective connections between neurons are quantified using cross-correlation between spike trains. We will examine the dynamics of these effective connections during changes in depth rendered in dynamic random dot stereograms and compare them to predictions made by cooperative algorithms. In addition, we will test the hypothesis that cooperative mechanisms also facilitate detecting orientation (in depth) of a surface. We will extend our approach by measuring the dynamics of effective connections while displaying dynamic random dot stereogram gradients. Surface orientation is an elementary step in detecting more complex depth-based patterns of surfaces. The results of the proposed project will provide fundamental details about the underlying mechanisms of neural integration. Understanding how early disparity signals are integrated will allow us to understand how complex depth perception evolves through the visual system. A general motivation of this project is to understand how neurons interact, which is fundamental to determining how the brain functions. More specifically, figuring out how the visual system computes depth from two-dimensional images will be essential in developing treatment for neuropathology with known depth perception deficiencies.
描述(由申请人提供):我们将测试视觉系统通过初级视觉皮层神经元之间的合作处理来匹配左眼和右眼图像之间的特征的假设,这些神经元对这些图像之间的水平差异做出专门的反应。神经元之间的有效连接使用脉冲序列之间的相互关系进行量化。我们将研究在动态随机点立体图中呈现的深度变化期间这些有效连接的动态,并将其与合作算法的预测进行比较。此外,我们将测试合作机制也有助于检测表面方向(深度)的假设。我们将通过在显示动态随机点立体图梯度的同时测量有效连接的动态来扩展我们的方法。表面定向是检测更复杂的基于深度的表面模式的基本步骤。该计划的结果将提供有关神经整合潜在机制的基本细节。了解早期视差信号是如何整合的,将使我们了解复杂的深度感知是如何通过视觉系统进化的。这个项目的总体动机是了解神经元如何相互作用,这是确定大脑功能的基础。更具体地说,弄清楚视觉系统如何从二维图像中计算深度,对于开发已知深度感知缺陷的神经病理学治疗至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JASON M SAMONDS其他文献
JASON M SAMONDS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JASON M SAMONDS', 18)}}的其他基金
Spatial Integration of V1 Horizontal Disparity Signals
V1水平视差信号的空间积分
- 批准号:
7394330 - 财政年份:2007
- 资助金额:
$ 4.96万 - 项目类别:
Spatial Integration of V1 Horizontal Disparity Signals
V1 水平视差信号的空间积分
- 批准号:
7579819 - 财政年份:2007
- 资助金额:
$ 4.96万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 4.96万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 4.96万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 4.96万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 4.96万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 4.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 4.96万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 4.96万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 4.96万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 4.96万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 4.96万 - 项目类别:
Standard Grant