Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
基本信息
- 批准号:7228984
- 负责人:
- 金额:$ 4.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-05-01 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsBindingBinding ProteinsComplexComputersComputing MethodologiesDrug DesignFree EnergyGenerationsLigand BindingLigandsMeasuresMedicineMembrane ProteinsMethodsModelingPharmaceutical PreparationsProteinsRangeResearchSamplingScientistSolventsStandards of Weights and MeasuresStatistical MethodsStructureSystemTechniquescostdrug developmentimprovedmolecular mechanicssimulation
项目摘要
DESCRIPTION (provided by applicant): 1) To take standard implicit solvent models, combined with atomistic biomolecular models and modern sampling techniques, and attempt to directly evaluate the absolute free energy of ligand binding in a range of protein-ligand systems. 2) To develop statistical methods to identify of which, if any, of various sampling techniques are able to truly able to yield precise free energies of binding complexes for a range of relevant systems. 3) To use these results to identify ways in which the implicit solvent and atomistic biomolecular models can be improved to better fit the binding energies and structures for a wide variety of ligand protein complexes. This research has important consequences for rational drug design, and consequently all of medicine. If the predictive ability of biomolecular simulations can be significantly improved, and the efficiency of these methods increased, it will result in significantly lowered total costs of drug development.
1)采用标准隐式溶剂模型,结合原子生物分子模型和现代采样技术,并试图直接评估一系列蛋白质-配体系统中配体结合的绝对自由能。2)开发统计方法,以确定各种采样技术中的哪些(如果有的话)能够真正产生一系列相关系统的结合复合物的精确自由能。3)使用这些结果,以确定隐含的溶剂和原子的生物分子模型,可以改善,以更好地适应各种各样的配体蛋白质复合物的结合能和结构的方式。这项研究对合理的药物设计,从而对所有的医学都有重要的影响。如果生物分子模拟的预测能力能够显著提高,并且这些方法的效率提高,则将导致药物开发的总成本显著降低。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multiscale Optimization of a Truncated Newton Minimization Algorithm and Application to Proteins and Protein-Ligand Complexes.
截断牛顿最小化算法的多尺度优化及其在蛋白质和蛋白质-配体复合物中的应用。
- DOI:10.1021/ct600129f
- 发表时间:2007
- 期刊:
- 影响因子:5.5
- 作者:Zhu,Kai;Shirts,MichaelR;Friesner,RichardA;Jacobson,MatthewP
- 通讯作者:Jacobson,MatthewP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R Shirts其他文献
Michael R Shirts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R Shirts', 18)}}的其他基金
Open Data-driven Infrastructure for Building Biomolecular Force Field for Predictive Biophysics and Drug Design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10166314 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10356089 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10592758 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10580156 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10412594 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
9887804 - 财政年份:2020
- 资助金额:
$ 4.88万 - 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
- 批准号:
7061270 - 财政年份:2005
- 资助金额:
$ 4.88万 - 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
- 批准号:
6934020 - 财政年份:2005
- 资助金额:
$ 4.88万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




