Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design

开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场

基本信息

  • 批准号:
    9887804
  • 负责人:
  • 金额:
    $ 67.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT The study of biomolecular interactions and design of new therapeutics requires accurate physical models of the atomistic interactions between small molecules and biological macromolecules. Over the least few decades, molecular mechanics force fields have demonstrated the potential that physical models hold for quantitative biophysical modeling and predictive molecular design. However, a significant technology gap exists in our ability to build force fields that achieve high accuracy, can be systematically improved in a statistically robust manner, be extended to new areas of chemistry, can model post-translational and covalent modifications, are able to quantify systematic errors in predictions, and can be broadly applied across a high-performance software packages. In this project, we aim to bridge this technology gap to enable new generations of accurate quantitative biomolec- ular modeling and (bio)molecular design for chemical biology and drug discovery. In Aim 1, we will produce a modern, open infrastructure to enable practitioners to rapidly and conveniently construct and employ accurate and statistically robust physical force fields via automated machine learning methods. In Aim 2, we will construct open, machine-readable experimental and quantum chemical datasets that will accelerate next-generation force field development. In Aim 3, we will develop statistically robust Bayesian inference techniques to enable the auto- mated construction of type assignment schemes that avoid overfitting and selection of physical functional forms statistically justfied by the data. This approach will also provide an estimate of the systematic error in predicted properties arising from uncertainty in parameters or functional form choices—generally the dominant source of error—to be quantified with little added expense. In Aim 4, we will integrate and apply this infrastructure to produce open, transferable, self-consistent force fields that achieve high accuracy and broad coverage for modeling small molecule interactions with biomolecules (including unnatural amino or nucleic acids and covalent modifications by organic molecules), with the ultimate goal of covering all major biomolecules. This research is significant in that the technology developed in this project has the potential to radically transform the study of biomolecular phenomena by providing highly accurate force fields with exceptionally broad chemical coverage via fully consistent parameterization of organic (bio)molecules. In addition, we will produce new tools to automate force field creation and tailoring to specific problem domains, quantify the systematic error in predictions, and identify new data for improving force field accuracy. This will greatly improve our ability to study diverse biophysical processes at the molecular level, and to rationally design new small-molecule, protein, and nucleic acid therapeutics. This approach will bring statistical rigor to the field of force field construction and application by providing a means to make data-driven decisions, while enhancing reproducibility by enabling it to become a rigorous and reproducible science using a fully open infrastructure and datasets.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael R Shirts其他文献

Michael R Shirts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael R Shirts', 18)}}的其他基金

Open Data-driven Infrastructure for Building Biomolecular Force Field for Predictive Biophysics and Drug Design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
  • 批准号:
    10166314
  • 财政年份:
    2020
  • 资助金额:
    $ 67.56万
  • 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
  • 批准号:
    10356089
  • 财政年份:
    2020
  • 资助金额:
    $ 67.56万
  • 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
  • 批准号:
    10592758
  • 财政年份:
    2020
  • 资助金额:
    $ 67.56万
  • 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
  • 批准号:
    10580156
  • 财政年份:
    2020
  • 资助金额:
    $ 67.56万
  • 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
  • 批准号:
    10412594
  • 财政年份:
    2020
  • 资助金额:
    $ 67.56万
  • 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
  • 批准号:
    6934020
  • 财政年份:
    2005
  • 资助金额:
    $ 67.56万
  • 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
  • 批准号:
    7061270
  • 财政年份:
    2005
  • 资助金额:
    $ 67.56万
  • 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
  • 批准号:
    7228984
  • 财政年份:
    2005
  • 资助金额:
    $ 67.56万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
  • 批准号:
    2322614
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
  • 批准号:
    534092360
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
  • 批准号:
    ES/Z50290X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
  • 批准号:
    24K20765
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427232
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427231
  • 财政年份:
    2024
  • 资助金额:
    $ 67.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了