Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
基本信息
- 批准号:10592758
- 负责人:
- 金额:$ 1.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AreaBayesian AnalysisBindingBiologicalBiologyBiophysical ProcessBiophysicsChemicalsChemistryComputer SimulationComputer softwareDNADataData SetDevelopmentDiseaseDrug DesignError SourcesGenerationsGoalsInfrastructureLearningLifeModelingModernizationModificationMolecularNucleic AcidsOccupationsPerformancePharmaceutical PreparationsPropertyProteinsRNAReadabilityReproducibilityResearchSchemeScienceScientistTechniquesTechnologyUncertaintybehavior influencebiophysical modeldesigndrug discoveryimprovedmachine learning methodmacromoleculemolecular mechanicsnext generationnovel therapeuticsnucleic acid-based therapeuticsopen dataphysical modelquantumrational designsimulationsmall moleculetoolunnatural amino acids
项目摘要
PROJECT SUMMARY/ABSTRACT
This Project Summary is unchanged from the original R01. The study of biomolecular interactions and design
of new therapeutics requires accurate physical models of the atomistic interactions between small molecules and
biological macromolecules. Over the least few decades, molecular mechanics force fields have demonstrated the
potential that physical models hold for quantitative biophysical modeling and predictive molecular design. However,
a significant technology gap exists in our ability to build force fields that achieve high accuracy, can be systemati-
cally improved in a statistically robust manner, be extended to new areas of chemistry, can model post-translational
and covalent modifications, are able to quantify systematic errors in predictions, and can be broadly applied across
a high-performance software packages. In this project, we aim to bridge this technology gap to enable new gen-
erations of accurate quantitative biomolecular modeling and (bio)molecular design for chemical biology and drug
discovery. In Aim 1, we will produce a modern, open infrastructure to enable practitioners to rapidly and conve-
niently construct and employ accurate and statistically robust physical force fields via automated machine learning
methods. In Aim 2, we will construct open, machine-readable experimental and quantum chemical datasets that
will accelerate next-generation force field development. In Aim 3, we will develop statistically robust Bayesian
inference techniques to enable the auto- mated construction of type assignment schemes that avoid overfitting
and selection of physical functional forms statistically justified by the data. This approach will also provide an
estimate of the systematic error in predicted properties arising from uncertainty in parameters or functional form
choices—generally the dominant source of error—to be quantified with little added expense. In Aim 4, we will
integrate and apply this infrastructure to produce open, transferable, self-consistent force fields that achieve high
accuracy and broad coverage for modeling small molecule interactions with biomolecules (including unnatural
amino or nucleic acids and covalent modifications by organic molecules), with the ultimate goal of covering all
major biomolecules.
This research is significant in that the technology developed in this project has the potential to radically transform
the study of biomolecular phenomena by providing highly accurate force fields with exceptionally broad chemical
coverage via fully consistent parameterization of organic (bio)molecules. In addition, we will produce new tools to
automate force field creation and tailoring to specific problem domains, quantify the systematic error in predictions,
and identify new data for improving force field accuracy. This will greatly improve our ability to study diverse
biophysical processes at the molecular level, and to rationally design new small-molecule, protein, and nucleic
acid therapeutics. This approach will bring statistical rigor to the field of force field construction and application
by providing a means to make data-driven decisions, while enhancing reproducibility by enabling it to become a
rigorous and reproducible science using a fully open infrastructure and datasets.
项目摘要/摘要
本项目摘要与原始版本R01相同。生物分子相互作用的研究与设计
新疗法的发展需要精确的物理模型来描述小分子之间的原子相互作用
生物大分子。在至少几十年的时间里,分子力学力fi领域证明了
物理模型在定量生物物理建模和预测性分子设计方面的潜力。然而,
在我们建造高精度、可系统化的力fifi场的能力方面存在着显著的技术差距。
CALLY以统计稳健的方式改进,扩展到新的化学领域,可以模拟翻译后
和共价Modifi阳离子,能够量化预测中的系统误差,并可广泛应用于
一个高性能的软件包。在这个项目中,我们的目标是弥合这一技术差距,使新一代
化学生物学和药物的精确定量生物分子建模和(生物)分子设计的进展
发现号。在目标1中,我们将建立一个现代化、开放的基础设施,使从业者能够迅速和灵活地-
通过自动机器学习,巧妙地构建和使用准确且统计稳健的物理力fi场
方法:研究方法。在目标2中,我们将构建开放的、机器可读的实验和量子化学数据集
将加速下一代FORCEfi的发展。在目标3中,我们将开发统计稳健贝叶斯
支持类型赋值方案的自动匹配构造的推理技术,以避免过度fi设置
以及根据数据统计的物理函数形式的选择。这种方法还将提供一种
参数或函数形式不确定性引起的预测性质的系统误差的估计
选择-通常是主要的错误来源-被量化fi,几乎没有额外的费用。在目标4中,我们将
集成和应用这一基础设施,以产生开放、可转移、自洽的fi场,从而实现高
模拟小分子与生物分子(包括非自然的)相互作用的准确性和覆盖面广
氨基酸或核酸和有机分子的共价Modifi阳离子),最终目标是覆盖所有
主要生物分子。
这项研究的意义在于,该项目开发的技术具有从根本上改变的潜力
用非常广泛的化学物质提供高精度的力场fi来研究生物分子现象
通过有机(生物)分子的完全一致的参数化覆盖。此外,我们将生产新的工具来
自动创建和定制Forcefifi以特定问题域,量化预测中的系统误差,
并为提高测力fi场精度确定新的数据。这将极大地提高我们学习多样化的能力
分子水平上的生物物理过程,合理设计新的小分子、蛋白质和核
酸疗法。这种方法将给fifiFeld的构建和应用带来统计上的严谨性
通过提供一种做出数据驱动的决策的方法,同时通过使其成为
使用完全开放的基础设施和数据集的严谨和可重现的科学。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A transferable double exponential potential for condensed phase simulations of small molecules.
- DOI:10.1039/d3dd00070b
- 发表时间:2023-08-08
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Bayesian-Inference-Driven Model Parametrization and Model Selection for 2CLJQ Fluid Models.
- DOI:10.1021/acs.jcim.1c00829
- 发表时间:2022-02-28
- 期刊:
- 影响因子:5.6
- 作者:Madin, Owen C.;Boothroyd, Simon;Messerly, Richard A.;Fass, Josh;Chodera, John D.;Shirts, Michael R.
- 通讯作者:Shirts, Michael R.
Improving Force Field Accuracy by Training against Condensed-Phase Mixture Properties.
- DOI:10.1021/acs.jctc.1c01268
- 发表时间:2022-06-14
- 期刊:
- 影响因子:5.5
- 作者:Boothroyd, Simon;Madin, Owen C.;Mobley, David L.;Wang, Lee-Ping;Chodera, John D.;Shirts, Michael R.
- 通讯作者:Shirts, Michael R.
Open Force Field BespokeFit: Automating Bespoke Torsion Parametrization at Scale.
- DOI:10.1021/acs.jcim.2c01153
- 发表时间:2022-11-28
- 期刊:
- 影响因子:5.6
- 作者:Horton, Joshua T.;Boothroyd, Simon;Wagner, Jeffrey;Mitchell, Joshua A.;Gokey, Trevor;Dotson, David L.;Behara, Pavan Kumar;Ramaswamy, Venkata Krishnan;Mackey, Mark;Chodera, John D.;Anwar, Jamshed;Mobley, David L.;Cole, Daniel J.
- 通讯作者:Cole, Daniel J.
Open Force Field Evaluator: An Automated, Efficient, and Scalable Framework for the Estimation of Physical Properties from Molecular Simulation.
- DOI:10.1021/acs.jctc.1c01111
- 发表时间:2022-06-14
- 期刊:
- 影响因子:5.5
- 作者:Boothroyd, Simon;Wang, Lee-Ping;Mobley, David L.;Chodera, John D.;Shirts, Michael R.
- 通讯作者:Shirts, Michael R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R Shirts其他文献
Michael R Shirts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R Shirts', 18)}}的其他基金
Open Data-driven Infrastructure for Building Biomolecular Force Field for Predictive Biophysics and Drug Design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10166314 - 财政年份:2020
- 资助金额:
$ 1.08万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10356089 - 财政年份:2020
- 资助金额:
$ 1.08万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10580156 - 财政年份:2020
- 资助金额:
$ 1.08万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
10412594 - 财政年份:2020
- 资助金额:
$ 1.08万 - 项目类别:
Open data-driven infrastructure for building biomolecular force fields for predictive biophysics and drug design
开放数据驱动的基础设施,用于构建用于预测生物物理学和药物设计的生物分子力场
- 批准号:
9887804 - 财政年份:2020
- 资助金额:
$ 1.08万 - 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
- 批准号:
7061270 - 财政年份:2005
- 资助金额:
$ 1.08万 - 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
- 批准号:
6934020 - 财政年份:2005
- 资助金额:
$ 1.08万 - 项目类别:
Drug Binding Free Energies with Implicit Solvent Methods
使用隐式溶剂方法的药物结合自由能
- 批准号:
7228984 - 财政年份:2005
- 资助金额:
$ 1.08万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 1.08万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 1.08万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 1.08万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 1.08万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 1.08万 - 项目类别: