Disentangling generalization in deep neural networks
解开深度神经网络中的泛化问题
基本信息
- 批准号:2872706
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Despite the excellent empirical performance of deep artificial neural networks (ANNs) on a wide variety of tasks, including in vision and language modelling, the underlying principles that allow over-parameterised ANNs to both memorise training data and generalise to unseen data are not well understood. A standard result that infinite-width ANNs are universal function approximators renders many standard measures of generalisation ability uninformative in the case of ANNs. The inability to measure generalization performance (except on some subset of the data), or guarantee that the training data contains all possible examples of a phenomenon, makes the increased deployment of ANNs in safety-critical areas, such as finance and healthcare, risky. This project will attempt to analyse the generalisation performance of ANNs by disentangling the effects of the training data, the model architecture, and the training algorithm. The project will also attempt to develop new measures of generalisation performance that are more informative than existing measures. The project will be supervised by Prof. Varun Kanade.Machine learning researchers will often refer to the "inductive bias" of a model to explain why the trained model expresses a function that generalises well, rather than another function that fits the training data but does not generalise. However, while some inductive biases are easy to define and understand, such as translation invariance in convolutional neural networks, others are more difficult, such as the apparent simplicity bias of simple feedforward architectures. Previous studies have tended to focus on only one aspect of the inductive bias of a model, such as the architecture, while holding other factors constant, making it hard to determine the relative importance of each factor on generalisation. This project will involve mathematical analysis of a number of architectures and optimisation methods, on several different types of data, to determine the relative contribution of each of these factors to the generalisation performance of the trained model. This will lead to the development of theoretically motivated generalisation bounds that can provide guidance and guarantees on when deployed models will perform as expected, and when they may fail. The successful completion of this project could have a significant impact on increasing trust in ANNs, and ensuring they are deployed safely.This project falls within the EPSRC artificial intelligence technologies and theoretical computer science research areas.
尽管深度人工神经网络(ANN)在包括视觉和语言建模在内的各种任务上具有出色的经验表现,但允许过参数化ANN记住训练数据并推广到看不见的数据的基本原理还没有得到很好的理解。一个标准的结果,无限宽度的人工神经网络是通用的函数逼近器,使许多标准的措施,泛化能力的情况下,人工神经网络的信息。无法测量泛化性能(除了数据的某些子集),或保证训练数据包含现象的所有可能示例,使得在金融和医疗保健等安全关键领域增加部署人工神经网络具有风险。这个项目将试图通过分析训练数据,模型架构和训练算法的影响来分析ANN的泛化性能。该项目还将尝试开发比现有措施更具信息性的新的泛化性能措施。机器学习研究人员经常会提到模型的“归纳偏差”,以解释为什么训练后的模型表达了一个泛化能力很好的函数,而不是另一个拟合训练数据但不能泛化的函数。然而,虽然一些归纳偏差很容易定义和理解,例如卷积神经网络中的平移不变性,但其他一些则比较困难,例如简单前馈架构的明显简单性偏差。以前的研究往往只关注模型的归纳偏差的一个方面,如架构,而保持其他因素不变,使得很难确定每个因素对概括的相对重要性。该项目将涉及对几种不同类型的数据进行数学分析,以确定这些因素中的每一个对训练模型的泛化性能的相对贡献。这将导致理论上有动机的泛化界限的发展,可以提供指导和保证,当部署的模型将按预期执行时,当它们可能失败时。该项目的成功完成可能会对增加对人工神经网络的信任产生重大影响,并确保它们安全部署。该项目属于EPSRC人工智能技术和理论计算机科学研究领域的福尔斯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidating the Neural Computations Underlying Spatial Learning, Decision-Making and Generalization in Virtually-Navigating Monkeys
阐明虚拟导航猴子空间学习、决策和泛化背后的神经计算
- 批准号:
10723874 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bridging the Generalization and Interpretation Gaps in Deep Neural Networks
弥合深度神经网络的泛化和解释差距
- 批准号:
2324389 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Translating AI-based methods to quantify pathology in MS: Development, validation and implementation of a sustainable MRI analysis framework within a pan-Canadian network
转化基于人工智能的方法来量化多发性硬化症的病理学:在泛加拿大网络内开发、验证和实施可持续的 MRI 分析框架
- 批准号:
480232 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
Generalization in Structured Prediction and Deep Learning
结构化预测和深度学习的泛化
- 批准号:
535206-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Principled approaches to deep learning: generalization under distribution shift and predictive uncertainty
深度学习的原则方法:分布变化和预测不确定性下的泛化
- 批准号:
RGPIN-2022-03609 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Causality for Out of Distribution Generalization in Deep Learning
深度学习中分布外泛化的因果关系
- 批准号:
575476-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CRII: AF: Optimization and sampling algorithms with provable generalization and runtime guarantees, with applications to deep learning
CRII:AF:具有可证明的泛化性和运行时保证的优化和采样算法,以及深度学习的应用
- 批准号:
2104528 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




