Bridging the Generalization and Interpretation Gaps in Deep Neural Networks

弥合深度神经网络的泛化和解释差距

基本信息

  • 批准号:
    2324389
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

This project focuses on enhancing the reliability and understandability of advanced artificial intelligence (AI) systems, specifically deep neural networks (DNNs) - a type of AI that uses layered structures of interconnected elements, or "neurons," to process and interpret data in sophisticated ways. Currently, these AI systems face two main challenges. Firstly, they may struggle to apply what they've learned in one situation to a different one. This issue, known as the "generalization gap," is similar to a student who has crammed for an exam but struggles to apply the knowledge in a real-world scenario. Secondly, DNNs, like many AI systems, work in ways that can be difficult for humans to understand. This "interpretation gap" is like using a complicated machine without a user manual, which can make it hard to correct mistakes or explain why specific decisions were made. These challenges could have implications for any sector where AI is used, from healthcare to autopilot. If AI makes mistakes because of the generalization gap or if it's not clear why a decision was made due to the interpretation gap, it could lead to significant errors, lack of trust, or even potential harm. This project aims to study these issues, enhancing the reliability and transparency of AI systems, enabling us to apply these technologies more confidently and effectively. By doing so, it will advance our scientific understanding of AI, support education in this vital field, and benefit society by ensuring AI technologies are more dependable and understandable. The project also provides research opportunities for graduate students. This project aims to develop a new framework to address the generalization and interpretation gaps in DNNs by investigating a series of well-defined research problems. The work includes the development of novel statistical theories for a better understanding of generalization errors in DNNs, the creation of robust and computationally efficient algorithms, and the promotion of innovative approaches for out-of-distribution generalizations. This project will advance our understanding of DNNs, develop new methods and algorithms, and provide insights into practical applications in diverse fields. The principal investigators will incorporate the research findings of this project into their educational endeavors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的重点是增强高级人工智能(AI)系统的可靠性和可理解性,特别是深度神经网络(DNN)--一种使用互连元件或“神经元”的分层结构来处理和解释数据的人工智能。复杂的方式。目前,这些人工智能系统面临两个主要挑战。首先,他们可能很难将他们在一种情况下学到的东西应用到另一种情况下。这个问题被称为“概括差距”,类似于一个学生为了考试而死记硬背,但却很难将知识应用到现实世界中。其次,DNN和许多人工智能系统一样,其工作方式可能很难让人类理解。这种“解释差距”就像使用一台没有用户手册的复杂机器,这可能会导致很难纠正错误或解释为什么会做出特定的决定。这些挑战可能会对任何使用人工智能的行业产生影响,从医疗保健到自动驾驶。如果人工智能因为泛化差距而犯错误,或者如果由于解释差距而不清楚为什么做出决定,那么它可能会导致重大错误,缺乏信任,甚至潜在的伤害。该项目旨在研究这些问题,提高人工智能系统的可靠性和透明度,使我们能够更自信,更有效地应用这些技术。通过这样做,它将促进我们对人工智能的科学理解,支持这一重要领域的教育,并通过确保人工智能技术更可靠和更容易理解来造福社会。该项目还为研究生提供了研究机会。该项目旨在开发一个新的框架,通过调查一系列定义明确的研究问题来解决DNN中的泛化和解释差距。这项工作包括开发新的统计理论,以更好地理解DNN中的泛化错误,创建强大且计算效率高的算法,以及推广用于分布外泛化的创新方法。该项目将促进我们对DNN的理解,开发新的方法和算法,并为不同领域的实际应用提供见解。主要研究人员将把本项目的研究成果纳入他们的教育工作中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuan Ke其他文献

超高维广义半变系数模型的模型选择和模型设定
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Degui Li;Yuan Ke;Wenyang Zhang
  • 通讯作者:
    Wenyang Zhang
Identification of suspended particulate matters as the hotspot of polycyclic aromatic hydrocarbon degradation-related bacteria and genes in the Pearl River Estuary using metagenomic approaches.
利用宏基因组方法识别珠江口悬浮颗粒物作为多环芳烃降解相关细菌和基因的热点。
  • DOI:
    10.1016/j.chemosphere.2021.131668
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Xie Xiuqin;Yuan Ke;Yao Yongyi;Sun Jingyu;Lin Li;Huang Yongshun;Lin Ge;Luan Tiangang;Chen Baowei
  • 通讯作者:
    Chen Baowei
Rapid and on-site analysis of amphetamine-type illicit drugs in whole blood and raw urine by slug-flow microextraction coupled with paper spray mass spectrometry
通过弹流微萃取结合纸喷雾质谱法对全血和原尿中的苯丙胺类违禁药物进行快速现场分析
  • DOI:
    10.1016/j.aca.2018.06.006
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Yang Yunyun;Wu Junhui;Deng Jiewei;Yuan Ke;Chen Xi;Liu Ning;Wang Xiaowei;Luan Tiangang
  • 通讯作者:
    Luan Tiangang
Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea
珠江口和南海沉积物中汞甲基化相关微生物和基因
  • DOI:
    10.1016/j.ecoenv.2019.109722
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yuan Ke;Chen Xin;Chen Ping;Huang Yongshun;Jiang Jie;Luan Tiangang;Chen Baowei;Wang Xiaowei
  • 通讯作者:
    Wang Xiaowei
Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2
  • DOI:
    doi: 10.1016/j.vetmic.2019.108403
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
  • 作者:
    Gong Wenjie;Li Junhui;Wang Zunbao;Sun Jiumeng;Mi Shijiang;Xu Jialun;Cao Jian;Hou Yuzhen;Wang Danyang;Huo Xinliang;Sun Yanjun;Wang Pengjiang;Yuan Ke;Gao Yangyi;Zhou Xubin;He Sun;Tu Changchun
  • 通讯作者:
    Tu Changchun

Yuan Ke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuan Ke', 18)}}的其他基金

Best Subset Selection: Statistics Meets Quantum Computing
最佳子集选择:统计学遇上量子计算
  • 批准号:
    2210468
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
  • 批准号:
    2339198
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
  • 批准号:
    2338878
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Development of a high-rate ultrasonic windspeed measurement method based on a generalization of time inverse method and wave number estimation using EKF
开发基于时间反演方法和 EKF 波数估计推广的高速超声波风速测量方法
  • 批准号:
    23K03880
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Learning for Generalization in Large-Scale Cyber-Physical Systems
职业:大规模网络物理系统中的泛化学习
  • 批准号:
    2239566
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Disentangling generalization in deep neural networks
解开深度神经网络中的泛化问题
  • 批准号:
    2872706
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
  • 批准号:
    23H00081
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了