Automated Personalised 4D Heart Modelling for Disease Prediction
用于疾病预测的自动化个性化 4D 心脏建模
基本信息
- 批准号:2873398
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Generative statistical models of cardiac anatomy and function have a wide range of applications such as disease diagnosis, personalised medicine, generation of population and sub-population cohorts for in silico trials, etc. Geometric deep learning methods for cardiac anatomy have shown promising results for reconstructing the 3D biventricular cardiac anatomy shapes conditioned on population characteristics and predicting the 3D shape deformations between heart contraction and relaxation. Until now, research has focused on specific states within the cardiac cycle; however, the whole cardiac motion pattern plays a crucial role in determining the underlying pathologies.To address this significant gap in the current research, our aim is to develop a novel multi-modal model for the complete cardiac motion over the 3D cardiac anatomy from the standard clinical cardiac magnetic resonance imaging (MRI), using deep learning-based approaches. In addition to the information captured by cardiac MRI, the proposed model will also incorporate multi-modal information including individual's demography such as age, sex, ethnicity, body mass, etc. and electrophysiology data to accurately model and quantify their relationships. We intend to develop the proposed approach on the large and diverse UK Biobank population, in order to investigate the differences in the different data modalities. The envisaged final 4D model of cardiac anatomy and motion conditioned over population characteristics and electrophysiology would enable several downstream tasks, including but not limited to personalised medicine and in silico trials, as well as contribute to a greater knowledge of the relationship among cardiac anatomy, motion and pathologies.The proposed project would contribute a novel multi-modal geometric deep-learning model for the human heart, which would integrate cardiac geometry with motion and explore their relationship with population demography and electrophysiology. This, in turn, would contribute to the design of in silico trials, which have the potential to improve the efficiency of clinical trials and reduce costs. In silico trials also offer the possibility of simulating the efficacy of interventions in sub-populations underrepresented in the data, which would reduce spurious extrapolations of trial results from other populations to these groups. The model would also contribute towards the field of personalised medicine; by simulating the impact of interventions on a bespoke simulation of a subject's anatomy, personalised risk profiles for different interventions can be evaluated and compared. Finally, investigations into the relationships between cardiac anatomy, motion, demography, electrophysiology, and pathology could yield new insights into the aetiology of cardiovascular diseases.The project fits within both Challenges 1 and 2 of the EPSRC Healthcare Technologies Research Theme strategy. For Challenge 1, the proposed approach will interpret and analyse population to understand both individual and population scale variation in disease phenotypes. The approach would also contribute towards the development of novel prediction tools like digital twins and the discovery of new indicators of susceptibility and risk of disease. For Challenge 2, the project would contribute to the development of novel techniques for optimising patient-specific illness prediction, biomarker identification, decision-support systems, and predicting susceptibility to illness.
心脏解剖和功能的生成性统计模型在疾病诊断、个性化医学、群体和亚群体队列的生成等方面有着广泛的应用。心脏解剖学的几何深度学习方法在根据群体特征重建三维双室心脏解剖形状和预测心脏收缩和松弛之间的三维形状变形方面显示出良好的结果。到目前为止,研究集中在心脏周期中的特定状态;然而,整个心脏运动模式在确定潜在的病理机制中起着至关重要的作用。为了解决当前研究中的这一重大差距,我们的目标是利用基于深度学习的方法,从标准的临床心脏磁共振成像(MRI)中开发一个新的多模式模型来描述3D心脏解剖中的完整心脏运动。除了心脏核磁共振获取的信息外,建议的模型还将纳入多模式信息,包括个人的人口统计信息,如年龄、性别、种族、体重等,以及电生理数据,以准确建模和量化它们之间的关系。我们打算对庞大而多样化的英国生物库群体开发拟议的方法,以调查不同数据模式的差异。设想的心脏解剖和运动的最终4D模型以人群特征和电生理学为条件,将实现几项下游任务,包括但不限于个性化医学和计算机试验,并有助于更好地了解心脏解剖、运动和病理学之间的关系。拟议的项目将为人类心脏贡献一种新颖的多模式几何深度学习模型,该模型将心脏几何与运动相结合,并探索它们与人群人口学和电生理学的关系。这反过来将有助于硅胶试验的设计,这有可能提高临床试验的效率和降低成本。在电子计算机试验中,也提供了模拟干预在数据中代表性不足的亚群中的有效性的可能性,这将减少从其他人群到这些群体的试验结果的虚假推断。该模型还将有助于个性化医学领域;通过模拟干预措施对受试者解剖的定制模拟的影响,可以评估和比较不同干预措施的个性化风险概况。最后,对心脏解剖、运动、人口学、电生理学和病理学之间的关系的调查可能会对心血管疾病的病因学产生新的见解。该项目符合EPSRC医疗保健技术研究主题战略的挑战1和挑战2。对于挑战1,拟议的方法将解释和分析群体,以了解疾病表型的个体和群体规模差异。该方法还将有助于开发新的预测工具,如数字双胞胎,以及发现新的易感性和疾病风险指标。对于挑战2,该项目将有助于开发新的技术,以优化特定患者的疾病预测、生物标记物识别、决策支持系统和预测疾病的易感性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Flok Health: Developing a pocket physiotherapist to deliver personalised healthcare at population scale
Flok Health:开发袖珍物理治疗师以在人口规模上提供个性化医疗保健
- 批准号:
10100082 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
TARGET: Health virtual twins for the personalised management of stroke related to atrial fibrillation
目标:健康虚拟双胞胎,用于房颤相关中风的个性化管理
- 批准号:
10114601 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Transforming child mental health: co-designing, building and evaluating a digitally enabled, personalised, prevention pathway
改变儿童心理健康:共同设计、构建和评估数字化、个性化的预防途径
- 批准号:
MR/X034917/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10104323 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
VITAL: VIrtual Twins as tools for personalised clinicAL care
VITAL:虚拟双胞胎作为个性化临床护理的工具
- 批准号:
10106393 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
NEXT GENERATION TOOLS FOR GENOME-CENTRIC MULTIMODAL DATA INTEGRATION IN PERSONALISED CARDIOVASCULAR MEDICINE
用于个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10098097 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Health virtual twins for the personalised management of stroke related to atrial fibrillation
健康虚拟双胞胎用于房颤相关中风的个性化管理
- 批准号:
10102834 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded