GenePhLo: Genetic Phase-based Logic
GenePhLo:基于遗传阶段的逻辑
基本信息
- 批准号:2875592
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Just like electronic computers can take input and employ algorithms to get an output, so can living cells react to some input molecule and produce another in response. Instead of electric circuits, cells have a network of linked biological processes, at the base of which we have the central dogma - DNA is transcribed into RNA, RNA is translated into proteins, and proteins can regulate DNA transcription (Brophy and Voigt, 2014). Using DNA with known functions, we can assemble genetic logical circuits.The most common approach to both electronic and bio-computing is level-based: when a signal (electric voltage or a biomolecule concentration) is under one threshold, the signal is counted as low, or binary 0, and when it is above another, it is counted as high, or binary 1. While this computation method is widespread and can even be found in natural systems like Ca2+ signalling (Berridge, Lipp and Bootman, 2000), it is not very robust to noise. This can be a problem in intrinsically noisy biological systems. For example, the same protein can be expressed differently across the bacterial colony under the same growing conditions (Beal, 2017), which could result in conflicting computing outcome. What is more, in level-based logic the signal between the thresholds is not determined, neither 0 nor 1.Another way to encode binary logic is to use phases of oscillating signals. When a signal oscillates in phase with the reference, this is counted as binary 1, and when it is out of phase, 0. Sub-harmonic injection locking (SHIL) can be used to make oscillatory signal bistable, so that the phase could be shifted in response to an input (Roychowdhury, 2015), recording a single bit of information. To reach such bistability, a locking signal of twice higher frequency needs to be added to the system.While phase-based computers are more robust to noise, this approach has not yet been applied in biocomputing. I would like to change this. In my project, I aim to build and characterize basic genetic phase-based logic circuits.Objectives:Characterize phase shifts due to the delays caused by transcription, translation, and diffusion of signalling molecules.Build and characterize a phase-based NOT gate.Compare robustness of phase-based and level-based NOT gates.Build and test phase-based complimentary MAJORITY, NAND and NOR gates.Use Danino et al. (2010) oscillator to test SHIL.In my project, I will apply both computational and lab-based approaches. I will use modelling to explore a range of parameters and determine suitable experimental setups. In the lab, I will use characterized engineered E. coli cells and grow them in microfluidic devices, using a Nikon Ti-E microscope to record their behaviour. When needed, I will edit existing genetic circuits or engineer new using Gibson and Golden Gate assembly methods. I will use small signalling molecules and quorum sensing as inputs and "wires", linking cells with different genetic circuits together. Finally, I will connect cells containing logic gates to a synchronized genetic oscillator colony by Danino et al. (2010) which will act as a state register.References:Beal, J. (2017) 'Biochemical complexity drives log-normal variation in genetic expression', Engineering Biology, 1(1). Available at: https://doi.org/10.1049/enb.2017.0004. Berridge, M.J., Lipp, P. and Bootman, M.D. (2000) 'The versatility and universality of calcium signalling', Nature Reviews Molecular Cell Biology. Available at: https://doi.org/10.1038/35036035.Brophy, J.A.N. and Voigt, C.A. (2014) 'Principles of genetic circuit design', Nature Methods. Available at: https://doi.org/10.1038/nmeth.2926.Danino, T. et al. (2010) 'A synchronized quorum of genetic clocks', Nature 2010 463:7279, 463(7279), pp. 326-330. Available at: https://doi.org/10.1038/nature08753.Roychowdhury, J. (2015) 'Boolean Computation Using Self-Sustaining Nonlinear Oscillators', Proceedings of the IEEE, 103(11). Available at: https:
就像电子计算机可以接受输入并使用算法来获得输出一样,活细胞也可以对一些输入分子做出反应并产生另一个作为回应。细胞没有电路,而是有一个相互联系的生物过程网络,在这个网络的基础上,我们有中心法则- DNA转录成RNA,RNA翻译成蛋白质,蛋白质可以调节DNA转录(Brophy和Voigt,2014)。利用已知功能的DNA,我们可以组装遗传逻辑电路。电子和生物计算最常见的方法是基于水平的:当信号(电压或生物分子浓度)低于一个阈值时,信号被计为低,或二进制0,当它高于另一个阈值时,它被计为高,或二进制1。虽然这种计算方法很普遍,甚至可以在自然系统中找到,如Ca 2+信号(Berridge,Lipp和Bootman,2000),但它对噪声不是很鲁棒。这在固有噪声的生物系统中可能是一个问题。例如,在相同的生长条件下,相同的蛋白质可以在细菌菌落中以不同的方式表达(比尔,2017),这可能导致计算结果冲突。此外,在基于电平的逻辑中,阈值之间的信号不是确定的,既不是0也不是1。编码二进制逻辑的另一种方式是使用振荡信号的相位。当信号与参考同相振荡时,这被计为二进制1,而当它异相时,则为0。分谐波注入锁定(SHIL)可用于使振荡信号振荡,以便相位可以响应于输入而移动(Roychowdhury,2015),记录单个信息位。为了达到这样的双稳态,需要在系统中加入两倍高频率的锁定信号。虽然基于相位的计算机对噪声更具鲁棒性,但这种方法尚未应用于生物计算。我想换掉这个。在我的项目中,我的目标是构建和表征基本的遗传相位逻辑电路。目标:表征由于信号分子的转录,翻译和扩散引起的延迟引起的相移。构建和表征基于相位的非门。比较基于相位和基于电平的非门的鲁棒性。构建和测试基于相位的互补MAJORITY,NAND和NOR门。使用Danino et al.(2010)振荡器测试SHIL。在我的项目中,我将应用计算和实验室方法。我将使用建模来探索一系列参数,并确定合适的实验设置。在实验室中,我将使用特征化的工程E。大肠杆菌细胞,并在微流控装置中培养它们,使用尼康Ti-E显微镜记录它们的行为。在需要的时候,我会编辑现有的基因电路或使用吉布森和金门组装方法设计新的。我将使用小信号分子和群体感应作为输入和“电线”,将具有不同遗传电路的细胞连接在一起。最后,我将把含有逻辑门的细胞连接到Danino等人(2010)的同步遗传振荡器菌落上,该菌落将充当状态寄存器。参考文献:比尔,J.(2017)“生物化学复杂性驱动遗传表达的对数正态变异”,工程生物学,1(1)。可在以下网址获得:https://doi.org/10.1049/enb.2017.0004。Berridge,M.J.,Lipp,P.和Bootman,M.D.(2000)“钙信号的多功能性和普遍性”,自然评论分子细胞生物学。网址:https://doi.org/10.1038/35036035.Brophy,J.A.N.和Voigt,C.A.(2014)“遗传电路设计原理”,自然方法。网址:https://doi.org/10.1038/nmeth.2926.Danino,T.等人(2010)“A synchronized quorum of genetic clocks”,Nature 2010 463:7279,463(7279),pp. 326-330.可从以下网址获取:https://doi.org/10.1038/nature08753.Roychowdhury,J.(2015)“使用自维持非线性振荡器的布尔计算”,IEEE会议记录,103(11)。网址:https:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
SBIR Phase I: Pathogen Interception: A new method for finding and identifying genetic sequences
SBIR 第一阶段:病原体拦截:寻找和识别基因序列的新方法
- 批准号:
2230484 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A Phase 2 Study of the Value of Pre-symptomatic Genetic Risk Assessment for Age-Related Macular Degeneration
年龄相关性黄斑变性症状前遗传风险评估价值的 2 期研究
- 批准号:
10387057 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Phase 2 Study of the Value of Pre-symptomatic Genetic Risk Assessment for Age-Related Macular Degeneration
年龄相关性黄斑变性症状前遗传风险评估价值的 2 期研究
- 批准号:
10615239 - 财政年份:2022
- 资助金额:
-- - 项目类别:
STTR Phase I: Manufacturing of Enhanced Composites via Interlaminar Incorporation of CNT/Epoxy Nanoscaffolds using Genetic Algorithm Assisted Machine Learning and Neural Networks
STTR 第一阶段:使用遗传算法辅助机器学习和神经网络,通过 CNT/环氧树脂纳米支架的层间结合制造增强复合材料
- 批准号:
2036490 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: A novel class of molecular vehicles for the targeted and precise integration of specified genetic information into the genomes of host cells and organisms
SBIR 第一阶段:一类新型分子载体,用于将特定遗传信息有针对性地精确整合到宿主细胞和生物体的基因组中
- 批准号:
2052290 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
STTR Phase I: A Machine Learning Toolbox to Identify Therapeutics for Rare Genetic Disorders from Phenotypic Screens on Micropattern-Based Organoids
STTR 第一阶段:机器学习工具箱,用于通过基于微图案的类器官的表型筛选来识别罕见遗传性疾病的治疗方法
- 批准号:
1843570 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: The DNA Barcode Scanner: Democratizing Genetic Information For Conservation
SBIR 第一阶段:DNA 条形码扫描仪:使遗传信息民主化以进行保护
- 批准号:
1843702 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase II: Genetic improvement of loblolly pine for increased wood density and improved wood quality
SBIR 第二阶段:火炬松的遗传改良,以增加木材密度并改善木材质量
- 批准号:
1831226 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Phase II IUCRC at Kansas State University: Center for Wheat Genetic Resources (WGRC)
堪萨斯州立大学 IUCRC 第二阶段:小麦遗传资源中心 (WGRC)
- 批准号:
1822162 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Elucidation of phase change of apple seedlings for extreme precocious flowering in apple with no transmission of genetic modification
阐明苹果幼苗的相变导致苹果极端早熟开花而不传递基因改造
- 批准号:
17K07653 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)