The mathematics of exotic phases: fractons

奇异相的数学:分形

基本信息

  • 批准号:
    2881673
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

The goal of this project is to develop a rigorous and general mathematical framework for fractonic phases of matter. Fractons are exotic quasiparticles which have restricted mobility, and have potential applications in e.g., quantum error correcting. There are several proposals on the realisation of such exotic phases in actual quantum materials.The starting point is 2D gapped ground states with topological order. Such states support anyonic quasiparticles with exotic exchange statistics. Mathematically, anyons are described by what is a called a fusion category. This rich algebraic structure appears in many different contexts in mathematics. Here, it encodes all interesting physical properties of the anyons and can be found by studying (superselection) sectors of the theory. These correspond to different irreducible representations of the observable algebra. This structure is invariant under enlarging the system (if we only add product states), or gently changing the Hamiltonian whilst preserving the spectral gap.Foliated fracton order (FFO) in 3D is a generalisation of this: instead of adding product states, we are allowed to add 2D topologically ordered systems. Hence a stack of uncoupled 2D topologically ordered states is trivial from this point of view. Many non-trivial examples with fracton quasiparticles have been found. These examples have a "foliation" structure, where the models are built up from 1D or 2D "leaves" coupled in non-trivial ways.The goal of this project is to develop the mathematical tools to look at classes (or phases) of FFOs at the same time, based on the sector theory for 2D topological order. Our approach, rooted in operator algebra theory, allows us to work directly in the thermodynamic limit. Guided by various examples, we will develop a rigorous version of the notion of FFO. Fracton models have infinitely many superselection sectors, but many can be considered equivalent. This leads to the notion of a quotient superselection sector. One of the main tasks will be to translate this notion into the operator algebraic setting. This will pave the way for a theory of fusion for fractons.A second goal of the project is to systematically develop the "gauging" of a global symmetry in this framework. This is not only useful to describe various FFOs, but is also relevant for the study of symmetry enriched topological (SET) phases in 2D. Hence we can describe many examples in a unified framework.
该项目的目标是为物质的分形相建立一个严格和通用的数学框架。分形子是具有有限迁移率的奇异准粒子,并且在例如,量子纠错关于在实际量子材料中实现这种奇异相,有几种方案,其出发点是具有拓扑有序的二维带隙基态。这种状态支持具有奇异交换统计的任意准粒子。在数学上,任意子被称为融合范畴。这种丰富的代数结构出现在数学中的许多不同背景中。在这里,它编码了任意子的所有有趣的物理性质,并且可以通过研究(超选择)理论的部门来找到。这些对应于可观测代数的不同不可约表示。这种结构是不变的扩大系统(如果我们只添加产品的状态),或轻轻地改变哈密顿量,同时保持频谱gap.Foliated fracton order(FFO)在3D是一个推广:而不是添加产品的状态,我们被允许添加2D拓扑有序系统.因此,从这个角度来看,一堆非耦合的2D拓扑有序态是微不足道的。已经发现了许多具有分形准粒子的非平凡例子。这些例子具有“叶状”结构,其中模型是由以非平凡方式耦合的1D或2D“叶子”建立的。本项目的目标是开发数学工具,同时基于2D拓扑序的扇区理论来研究FFO的类(或相)。我们的方法,植根于算子代数理论,使我们能够直接在热力学极限。在各种例子的指导下,我们将开发FFO概念的严格版本。分形模型有无限多个超选择扇区,但许多可以被认为是等价的。这导致了商超选择扇区的概念。主要任务之一将是把这个概念转化为算子代数设置。这将为分形子的融合理论铺平道路。该项目的第二个目标是在这个框架内系统地发展全球对称性的“测量”。这不仅有助于描述各种FFO,而且还与2D中的对称性富集拓扑(SET)相的研究有关。因此,我们可以在一个统一的框架中描述许多例子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Fermiology and exotic quantum phases of ultra-quantum-materials
超量子材料的费米学和奇异量子相
  • 批准号:
    2742831
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical Modelling of Exotic Liquid Crystalline Phases
奇异液晶相的数学模型
  • 批准号:
    2739112
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
RUI New Generation of AI-Augmented Quantum Monte Carlo Libraries to Guide the Search for Exotic Superfluid Phases in Cold Atoms
RUI 新一代人工智能增强量子蒙特卡罗库指导冷原子中奇异超流体相的搜索
  • 批准号:
    2207048
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exotic Quantum Liquid Phases Due to Intrinsic Degrees of Anisotropy
由于固有的各向异性程度而产生的奇异量子液相
  • 批准号:
    2001980
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Approaches to Modeling and Searching for Physics Beyond the Standard Model: Boosted Dark Matter, Macroscopic Dark Matter, Dark Sectors, and Exotic Phases
超越标准模型的物理建模和搜索新方法:增强暗物质、宏观暗物质、暗区和奇异相
  • 批准号:
    2112789
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Probing Exotic Phases of Ultra High Mobility Two-Dimensional Electrons
探测超高迁移率二维电子的奇异相
  • 批准号:
    2104771
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Interacting dynamics and exotic phases of quantum lattice systems
量子晶格系统的相互作用动力学和奇异相
  • 批准号:
    RGPIN-2018-03733
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Search for new phases of the exotic superfluid 3He under nanoconfinement
在纳米限制下寻找奇异超流体 3He 的新相
  • 批准号:
    2002692
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了