Enhancing Quantum Circuit Simulations through Structured Tensor Algebra Optimization
通过结构化张量代数优化增强量子电路仿真
基本信息
- 批准号:2884215
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In today's rapidly changing world, quantum computation is a game-changer, offering solutions to complex problems in various fields. It opens new doors to innovation and scientific progress, from enhancing data security to advancing drug discovery and improving computational efficiency. In parallel, quantum simulation on classical computers serves as a test lab for quantum ideas, ensuring they work correctly and aiding in learning about quantum science. These tools bridge two different worlds, making it easier to learn, discover, and innovate.Among the range of quantum simulation techniques, which include digital quantum simulations, variational quantum algorithms, quantum approximate optimization algorithms (QAOA), quantum annealing, and matrix product states, the latter appears as a notable option. They efficiently represent quantum states, particularly when dealing with highly complex systems. Their compact structure offers efficient storage and manipulation, making them a highly promising choice. However, challenges arise when optimizing the tensor network structure for different simulations, as finding the perfect configuration can be a computationally intensive task.This project addresses these challenges and boosts the efficiency of matrix product states in quantum simulations. We aim to develop techniques that can automatically identify and utilize optimal tensor network structures for different quantum tasks. This way, we can maximize the efficiency of matrix product states without dealing with the complexities often associated with manual optimization, as seen in existing quantum simulators. This approach has the potential to be a groundbreaking advancement in quantum simulation techniques, enabling us to tackle a wider range of complex problems more easily and quickly.Taking inspiration from the pioneering work by Ghorbani et al. on structured tensor algebra, as described in their paper "Compiling Structured Tensor Algebra," we plan to employ a symbolic computation framework called "StructTensor". This innovative approach will help us capture the structure, sparsity, and redundancy within quantum computations, leading to highly efficient simulations.Through a rigorous mathematical foundation, we will demonstrate the soundness of our symbolic structure computation and associated optimizations. We anticipate that this approach will outperform existing frameworks in various quantum computation workloads, ultimately accelerating quantum circuit simulations and advancing the field of quantum computing.
在当今快速变化的世界中,量子计算是一个游戏规则改变者,为各个领域的复杂问题提供解决方案。它为创新和科学进步打开了新的大门,从增强数据安全到推进药物发现和提高计算效率。与此同时,经典计算机上的量子模拟可以作为量子思想的测试实验室,确保它们正确工作,并帮助学习量子科学。这些工具将两个不同的世界连接起来,使学习、发现和创新变得更加容易。在量子模拟技术的范围内,包括数字量子模拟、变分量子算法、量子近似优化算法(QAOA)、量子退火和矩阵乘积态,后者似乎是一个值得注意的选择。它们有效地表示量子态,特别是在处理高度复杂的系统时。其紧凑的结构提供了高效的存储和操作,使其成为非常有前途的选择。然而,在为不同的模拟优化张量网络结构时会出现挑战,因为找到完美的配置可能是一项计算密集型任务。该项目解决了这些挑战,并提高了量子模拟中矩阵乘积态的效率。我们的目标是开发能够自动识别和利用不同量子任务的最佳张量网络结构的技术。通过这种方式,我们可以最大限度地提高矩阵乘积状态的效率,而无需处理与手动优化相关的复杂性,如现有量子模拟器中所见。这种方法有可能成为量子模拟技术的突破性进展,使我们能够更轻松快速地解决更广泛的复杂问题。从Ghorbani等人在结构化张量代数方面的开创性工作中获得灵感,如他们的论文“编译结构化张量代数”中所描述的,我们计划使用一个名为“StructTensor”的符号计算框架。这种创新的方法将帮助我们捕捉量子计算中的结构、稀疏性和冗余性,从而实现高效的模拟。通过严格的数学基础,我们将证明我们的符号结构计算和相关优化的可靠性。我们预计这种方法将在各种量子计算工作负载中优于现有框架,最终加速量子电路模拟并推进量子计算领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2243659 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224131 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Expand QISE: Track 1: RLQSC: Reinforcement Learning for the Optimal Design of Programmable Quantum Sensor Circuit
展开 QISE:轨道 1:RLQSC:用于可编程量子传感器电路优化设计的强化学习
- 批准号:
2231377 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Photonic Integrated Circuit Packaging (QPICPAC)
量子光子集成电路封装(QPICPAC)
- 批准号:
10032139 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative R&D
Quantum circuit encoding algorithm for quantum many-body problems
量子多体问题的量子电路编码算法
- 批准号:
22K03479 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
FET: Small: Optimizing quantum circuit design
FET:小型:优化量子电路设计
- 批准号:
2301120 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Circuit Quantum Optics with Piezoelectric Surface Acoustic Waves
职业:具有压电表面声波的电路量子光学
- 批准号:
2142846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: FET: Medium: Designing and Synthesizing a Quantum Circuit Compiler
SHF:FET:中:设计和综合量子电路编译器
- 批准号:
2212232 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Minimum Quantum Circuit Size Problems, Variants, and Applications
合作研究:FET:小型:最小量子电路尺寸问题、变体和应用
- 批准号:
2224132 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant