Development of new elastic titanium immediate load implants
开发新型弹性钛即刻负荷植入物
基本信息
- 批准号:7322827
- 负责人:
- 金额:$ 9.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlloysBiochemicalBiocompatibleBiocompatible MaterialsBiomechanicsBody FluidsChemistryClassCompatibleDentalDental ImplantsDevelopmentDevice DesignsElasticityEvaluationFatigueFractureFutureGeneral PopulationHigh temperature of physical objectImplantIn VitroJointsMaxillofacial ProsthesisMechanicsMethodsModificationMorphologyNanotechnologyOralOsseointegrationPerformancePhasePorosityProcessPropertyProstheses and ImplantsProsthesisPurposeRateRecording of previous eventsResearchResistanceStressStructureSurfaceSystemTextureTimeTitaniumVanadiumbasebiomaterial compatibilitybonecommercial applicationcytotoxicitydesireimplantable deviceimprovedin vivoinnovationmaxillofacialnanonanoprocessnovel strategiessizesoft tissuetherapy design
项目摘要
DESCRIPTION (provided by applicant): optimize their performance for oral and maxillofacial applications. Recent research has identified a new class of titanium materials with far better mechanical strength and elasticity than the current commercial titanium systems. The purpose of this research is to develop strong and highly elastic implantable materials for immediate load applications. The research will address two significant issues for the new titanium alloys, namely, to maximize elasticity with mechanical strength, and achieve high-rate osseointegration with long-term biocompatibility. Phase I has two Specific Aims: 1) identify a novel approach to create porosity and high Ti-content at the surface, and 2) demonstrate desirable surface morphology and biocompatibility for better osseointegration. Two specific surface treatments designed through nanotechnology principles will be demonstrated for establishing their key benefits as future immediate load systems. The best alloy/surface system with the highest elasticity of the new titanium alloys will be used to develop clinically innovative materials in the Phase II research. Phase II will pursue an integrated development of new implantable alloys from material synthesis, implant device designs, surface treatment to in-vivo implant loading evaluation. These new Ti alloys will have the potential to improve current titanium alloy systems for Dental and maxillofacial prostheses because it matches the elasticity of bone better. Greater applications will be in developing smaller and thinner implant components and prostheses that can withstand heavy masticatory functions. Commercial applications are expected to broaden Dental implant to the next level of general population with poor bone structures, and eventually extend to large-size joint and bone segments if reliable and high performance titanium biomaterials are demonstrated.
描述(由申请者提供):优化其在口腔和颌面部应用中的性能。最近的研究发现了一种新的钛材料,其机械强度和弹性远远好于目前的商业钛系统。这项研究的目的是开发坚固和高弹性的植入材料,用于即刻加载应用。这项研究将解决新型钛合金的两个重要问题,即最大限度地提高弹性和机械强度,以及实现具有长期生物相容性的高速骨整合。第一阶段有两个具体目标:1)确定一种新的方法,在表面创造孔洞和高钛含量,以及2)表现出理想的表面形态和生物相容性,以实现更好的骨整合。通过纳米技术原理设计的两种特殊表面处理将被演示,以确定它们作为未来直接加载系统的主要好处。在第二阶段的研究中,将使用新钛合金中具有最高弹性的最好的合金/表面系统来开发临床创新材料。第二阶段将致力于新型可植入合金的综合开发,从材料合成、植入装置设计、表面处理到体内植入负荷评估。这些新型钛合金将有可能改进现有的牙科和颌面部假体用钛合金系统,因为它与骨的弹性更好地匹配。更大的应用将是开发更小、更薄的种植部件和假体,这些部件和假体可以承受沉重的咀嚼功能。如果展示出可靠和高性能的钛生物材料,商业应用有望将牙科种植体扩大到骨结构较差的普通人群的下一个水平,并最终扩展到大尺寸的关节和骨段。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Wang其他文献
Rong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Wang', 18)}}的其他基金
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10083767 - 财政年份:2020
- 资助金额:
$ 9.84万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10339385 - 财政年份:2020
- 资助金额:
$ 9.84万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
9917601 - 财政年份:2020
- 资助金额:
$ 9.84万 - 项目类别:
Molecular Pathogenesis of Hereditary Hemorrhagic Telangiectasia
遗传性出血性毛细血管扩张症的分子发病机制
- 批准号:
10614453 - 财政年份:2020
- 资助金额:
$ 9.84万 - 项目类别:
Comparative Effectiveness of Treatments for Acute Myeloid Leukemia in the Elderly
老年人急性髓系白血病治疗的比较疗效
- 批准号:
8693973 - 财政年份:2013
- 资助金额:
$ 9.84万 - 项目类别:
Comparative Effectiveness of Treatments for Acute Myeloid Leukemia in the Elderly
老年人急性髓系白血病治疗的比较疗效
- 批准号:
8583443 - 财政年份:2013
- 资助金额:
$ 9.84万 - 项目类别:
Molecular pathogenesis and treatment of brain arteriovenous malformation
脑动静脉畸形的分子发病机制及治疗
- 批准号:
8117203 - 财政年份:2010
- 资助金额:
$ 9.84万 - 项目类别:
Molecular Pathogenesis of Brain Arteriovenous Malformation
脑动静脉畸形的分子发病机制
- 批准号:
9242700 - 财政年份:2010
- 资助金额:
$ 9.84万 - 项目类别:
Molecular pathogenesis and treatment of brain arteriovenous malformation
脑动静脉畸形的分子发病机制及治疗
- 批准号:
7987203 - 财政年份:2010
- 资助金额:
$ 9.84万 - 项目类别:
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 9.84万 - 项目类别:
Studentship
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
- 批准号:
LP210301261 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
- 批准号:
FT230100683 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 9.84万 - 项目类别:
Studentship














{{item.name}}会员




