Regulating Embryonic Stem Cell Growth & Differentiation by Colony Confinement
调节胚胎干细胞生长
基本信息
- 批准号:7290097
- 负责人:
- 金额:$ 32.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdhesionsAffectBody SizeCardiacCardiac MyocytesCell TherapyCell divisionCell physiologyCellsCellular biologyChemicalsChemistryClinicalCryopreservationCulture MediaDataDevelopmentDifferentiation and GrowthEngineeringExtracellular MatrixExtracellular Matrix ProteinsFreezingGene ExpressionGenerationsGoalsGrowthGrowth FactorKaryotypeLiquid substanceMechanical StimulationMechanicsMediatingMethodsMolecularMorphologyPatternPhenotypePhysicsPhysiologicalPlaguePolymersProceduresPropertyProteinsRateRecoveryRegenerative MedicineResearchResearch PersonnelScienceShapesSignal PathwaySignal TransductionSignal Transduction PathwaySourceStandards of Weights and MeasuresStem cellsStimulusSurfaceSuspension substanceSuspensionsSystemTestingTherapeuticTimeTissue EngineeringTranslationsUndifferentiatedUnited States National Institutes of HealthVisualWA01 cell lineWA09 Cell LineWeekWorkbasecell growthcell registrycell typecellular engineeringcytokinedensitydesigndesireembryonic stem cellhuman embryonic stem cellimmunocytochemistryimprovedinsightlithographypluripotencypressureresearch studyresponseself-renewalsenescencesizetooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Human embryonic stem cells (hESCs) hold tremendous potential for tissue engineering and regenerative medicine applications because of their unique combination of two properties, pluripotency and the capacity for infinite self-renewal. Thus, hESCs may serve as a safe, limitless supply of desired cells for cell-based therapies. To realize this potential, hESC researchers require culture systems that permit robust expansion of undifferentiated hESCs, provide efficient storage and recovery of hESCs, and direct differentiation of hESCs along desired developmental lineages. Design of such culture systems requires an understanding of how a variety of microenvironmental signals affect hESC growth and differentiation. These signals include spatial and temporal presentation of soluble proteins and other chemical factors, immobilized extracellular matrix components, mechanical stimuli, and cell-cell contact. In recent work we and others have demonstrated that constructing microenvironments that confine a variety of cell types, including hESCs, to 2-dimensional patterns or to 3-dimensional wells can have dramatic effects on intracellular signal transduction pathways, gene expression, and cell phenotype, including survival, proliferation, and differentiation. We have developed a method to confine hESCs to polymer microwells, constructed by soft lithography, by treating the surfaces between the microwells with a cell and protein repulsive coating and adsorbing extracellular matrix proteins to the surfaces inside the wells. As colonies fill the wells, each colony in the culture has the same size and shape as portions of the colony that grow outside the well are removed by fluid shear. Thus, these microwells serve as a valuable tool to assess the effects of colony morphology on hESC growth and differentiation. We have assembled a research team with expertise in materials science, hESC cell biology, cell physiology, and cell engineering to address how microwell confinement can be used in conjunction with other microenvironmental stimuli to design hESC culture systems. Our experiments will utilize hESC cell lines WA01 and WA09 from the NIH hESC Stem Cell Registry. In this study, we propose the following aims to develop a microwell-based culture system that (1) facilitates high density culture of undifferentiated hESCs, (2) provides efficient recovery of viable, undifferentiated hESCs following cryopreservation, and (3) directs differentiation of hESCs along desired developmental lineages:
1. Assess effects of hESC colony confinement on growth and differentiation in defined medium
2. Determine impact of colony confinement on recovery of undifferentiated hESCs following
cryopreservation
3. Quantify optimum embryoid body size for generation of hESC-derived cardiac myocytes
4. Develop mechanically-compliant microwells for application of mechanical strain to confined hESC
colonies
描述(由申请人提供):人类胚胎干细胞(hESC)具有组织工程和再生医学应用的巨大潜力,因为它们具有两种特性,即多能性和无限自我更新能力。因此,hESC可以作为一种安全的、无限的细胞来源,用于基于细胞的治疗。为了实现这一潜力,hESC研究人员需要培养系统,该培养系统允许未分化hESC的稳健扩增,提供hESC的有效储存和回收,以及hESC沿沿着期望的发育谱系的直接分化。设计这样的培养系统需要了解各种微环境信号如何影响hESC的生长和分化。这些信号包括可溶性蛋白质和其他化学因子的空间和时间呈现、固定的细胞外基质组分、机械刺激和细胞-细胞接触。 在最近的工作中,我们和其他人已经证明,构建将多种细胞类型(包括hESC)限制在二维模式或三维威尔斯孔中的微环境可以对细胞内信号传导途径、基因表达和细胞表型产生显着影响,包括生存、增殖和分化。我们已经开发了一种将hESC限制在通过软光刻构建的聚合物微孔威尔斯中的方法,通过用细胞和蛋白质排斥涂层处理微孔威尔斯之间的表面并将细胞外基质蛋白吸附到威尔斯内的表面。当集落填充威尔斯孔时,培养物中的每个集落具有相同的大小和形状,因为生长在孔外的部分殖民地通过流体剪切去除。因此,这些微孔作为一个有价值的工具,以评估集落形态对人胚胎干细胞的生长和分化的影响。我们已经组建了一个研究团队,具有材料科学,hESC细胞生物学,细胞生理学和细胞工程方面的专业知识,以解决如何将微孔限制与其他微环境刺激结合使用,以设计hESC培养系统。我们的实验将利用来自NIH hESC干细胞登记处的hESC细胞系WA 01和WA 09。在这项研究中,我们提出了以下目标来开发基于微孔的培养系统,其(1)促进未分化的hESC的高密度培养,(2)在冷冻保存后提供活的未分化的hESC的有效回收,和(3)引导hESC沿着期望的发育谱系分化:
1.评估hESC集落限制对限定培养基中生长和分化的影响
2.确定集落限制对未分化的hESC恢复的影响,
冷冻保存
3.量化用于产生hESC衍生的心肌细胞的最佳胚状体大小
4.开发机械顺应性微孔,用于将机械应变应用于受限的hESC
殖民地
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(9)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean P Palecek其他文献
Sean P Palecek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean P Palecek', 18)}}的其他基金
Label-free single-cell imaging for quality control of cardiomyocyte biomanufacturing
用于心肌细胞生物制造质量控制的无标记单细胞成像
- 批准号:
10675976 - 财政年份:2023
- 资助金额:
$ 32.4万 - 项目类别:
A Multi-Omics Approach to Discover Metabolic Critical Quality Attributes for Cardiomyocyte Biomanufacturing
发现心肌细胞生物制造代谢关键质量属性的多组学方法
- 批准号:
10435467 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Mechanisms of Shear Induction of Blood-Brain Barrier Phenotypes in Human iPSC-derived Brain Endothelial Progenitors
人 iPSC 来源的脑内皮祖细胞血脑屏障表型的剪切诱导机制
- 批准号:
10328223 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Mechanisms of Shear Induction of Blood-Brain Barrier Phenotypes in Human iPSC-derived Brain Endothelial Progenitors
人 iPSC 来源的脑内皮祖细胞血脑屏障表型的剪切诱导机制
- 批准号:
10557176 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
A Multi-Omics Approach to Discover Metabolic Critical Quality Attributes for Cardiomyocyte Biomanufacturing
发现心肌细胞生物制造代谢关键质量属性的多组学方法
- 批准号:
10218267 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Prevention of Candida biofilms by localized delivery of aurein analogues
通过局部递送金黄色素类似物预防念珠菌生物膜
- 批准号:
9221080 - 财政年份:2016
- 资助金额:
$ 32.4万 - 项目类别:
Prevention of Candida biofilms by localized delivery of aurein analogues
通过局部递送金黄色素类似物预防念珠菌生物膜
- 批准号:
9813824 - 财政年份:2016
- 资助金额:
$ 32.4万 - 项目类别:
Shear regulated differentiation of hPSCs to brain endothelial cells
hPSC 向脑内皮细胞的剪切调节分化
- 批准号:
8619338 - 财政年份:2013
- 资助金额:
$ 32.4万 - 项目类别:
Shear regulated differentiation of hPSCs to brain endothelial cells
hPSC 向脑内皮细胞的剪切调节分化
- 批准号:
8723321 - 财政年份:2013
- 资助金额:
$ 32.4万 - 项目类别:
Prevention of C. Albicans Biofilms by Beta-Peptide Release From Thin Films
通过薄膜释放 β 肽来预防白色念珠菌生物膜
- 批准号:
8681304 - 财政年份:2011
- 资助金额:
$ 32.4万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 32.4万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 32.4万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 32.4万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 32.4万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 32.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 32.4万 - 项目类别: