Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models

几何奇异摄动理论在超塑性加速棘轮模型中的应用

基本信息

  • 批准号:
    2888423
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

EPSRC Project Title: Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting ModelsAn approach for studying lateral loading for monopile designs is the Hyperplastic Accelerated Racheting Model (HARM) framework developed in collaboration between Orsted and Oxford University [1-3]. Using HARM one can study the loading response of the foundation as a function of stresses. Solving for displacement as a function of lateral loading is a problem in which many cycles of different amplitude are applied during the lifetime of the structure (due to waves etc), and because of a bias in loading from predominant wind directions, ratcheting is often observed [1].The objective of the proposed PhD thesis is to significantly reduce simulation time for modelling cyclic loading such that extended series of unloading/reloading cycles can be introduced in the optimization phase of the pile design. The method used is targeted to be some variation of Geometrical Singular Perturbation Theory (GSPT) [4-6].In my Master Thesis, we utilize the GSPT framework to prove the existence of a relevant slow-fast dynamical system equivalent to a continuous version of the HARM model, where the hyperbolicity of the critical manifold align with unloading and reloading parts of each cycle. This result may address direct solutions to some of the currently faced issues with long-term ratcheting and expected hysteresis analysis [7]. For the 0-D macro modelling approach of HARM two main directions are heavily motivated by the found slow-fast dynamical system in [7]: - First, a study in the performance of GSPT as a standalone tool to obtain integrable (thereby analytical) and non-conservative upper bounds for experienced ratcheting along pile depth. If such results are in alignment with gathered experiments/simulations, they can be used as immediate design parameters. - Secondly, a study on utilizing the knowledge of exactly where the HARM model becomes stiff to current numerical solvers. An idea is to model the fast and slow parts separately & glue them together - avoiding issues with machine number precision. This could lead to not only faster results but also more accurate.In [7] we have only shown existence of a slow-fast system for the 0-D macro model with plasticity surfaces. To align with currently used numerical solutions and improve complexity, a major part of the PhD will also be to extend the theoretical results to higher dimensions (or to new constitutive models such as HySand). As soil modelling is in general complex, it is expected that we reach a boundary point for the theoretical work. The 'until then' reach results are likely to motivate new numerical methods, also expected to be covered within the PhD thesis. Lastly, both the theoretical and numerical work will be validated by comprehensive studies on real-world data from Oxford's test pilings at Yorkshire, Kent and Dunkirk.Areas of investment & support: This project falls within the 'EPSRC Ground Engineering research area'. References[1] G. Houlsby and A. Puzrin, "A thermomechanical framework for constitutive models for rate-independent dissipative materials," International Journal of Plasticity, vol. 16, no. 9, pp. 1017-1047, 2000. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S074964199900073X[2] T. Balaam, "Development and calibration of cyclic loading models for monopile foundations in clays," Ph.D. dissertation, Oxford University, 2020.[3] C. Abadie, "Cyclic lateral loading of monopile foundations in cohesionless soils," Ph.D. dissertation, Oxford University, 01 2015.[4] K. U. Kristiansen, "A review of multiple time scale dynamics: Fundamental phenomena and mathematical methods," 2023, in review.[5] C. Kuehn, "Multiple time scale dynamics with two fast variables and one slow variable," Ph.D. dissertation, Cornell University, 05 2010.[6] C. K. R. T. Jones, Geometric singular perturbation theory.
EPSRC项目标题:几何奇异摄动理论在超塑性加速棘轮模型中的应用一种研究侧向载荷的方法是Orsted和牛津大学合作开发的超塑性加速棘轮模型(HARM)框架[1-3]。使用HARM可以研究地基的荷载响应作为应力的函数。求解位移作为横向载荷的函数是一个问题,其中在结构的寿命期间施加了许多不同幅度的循环(由于波浪等),并且由于载荷偏离主要风向,棘轮效应是经常观察到的[1]。拟议的博士论文的目的是显着减少模拟时间模拟循环加载,这样,扩展系列的卸载/可以在桩设计的优化阶段引入再加载循环。所使用的方法的目标是几何奇异摄动理论(GSPT)的某种变体[4-6]。在我的硕士论文中,我们利用GSPT框架证明了一个相关的慢-快动力系统的存在性,该系统等价于HARM模型的连续版本,其中临界流形的双曲性与每个周期的卸载和重装部分对齐。这一结果可以直接解决目前面临的一些长期棘轮效应和预期滞后分析问题[7]。对于HARM的0-D宏观建模方法,[7]中发现的慢-快动力系统极大地推动了两个主要方向:-首先,研究GSPT作为独立工具的性能,以获得经验棘轮沿着桩深的可积(从而分析)和非保守上限。如果这些结果与收集的实验/模拟一致,则可以将其用作直接设计参数。- 其次,研究了如何利用HARM模型对当前数值求解器变得僵硬的确切位置的知识。一个想法是分别对快部件和慢部件建模并将它们粘在一起-避免机器编号精度的问题。在文献[7]中,我们只证明了具有塑性表面的0维宏观模型存在一个慢-快系统。为了与目前使用的数值解保持一致并提高复杂性,博士学位的主要部分也将是将理论结果扩展到更高的维度(或新的本构模型,如HySand)。由于土壤建模一般是复杂的,预计我们将达到理论工作的边界点。“直到那时”达到的结果可能会激励新的数值方法,也预计将在博士论文中涵盖。最后,无论是理论和数值计算的工作将验证牛津大学的测试桩在约克郡,肯特和敦刻尔克的真实世界的数据进行全面的研究。投资和支持领域:该项目福尔斯属于“EPSRC地面工程研究领域”。参考文献[1] G. Houlsby和A. Puzrin,“一个热机械框架的本构模型的率无关耗散材料,”国际塑性杂志,第16卷,第9期,第17页。1017-1047,2000。[联机]。可用网址:https://www.sciencedirect.com/science/article/pii/S074964199900073X [2] T. Balaam,“粘土中可压缩地基循环荷载模型的开发和校准”,博士。毕业论文,牛津大学,2020年。[3]C. Abadie,“无粘性土中地基的循环侧向荷载”,博士。毕业论文,牛津大学,2015年1月。[4]K.联合Kristiansen,“多时间尺度动力学的回顾:基本现象和数学方法”,2023年,回顾。[5]C. Kuehn,“具有两个快变量和一个慢变量的多时间尺度动力学”,博士。博士论文,康奈尔大学,2010年5月。[6]C. K. R. T.琼斯,几何奇异摄动理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Mechano-geometrical cell interface for generating hiPSC derived higher order gastruloid
用于生成 hiPSC 衍生的高阶原肠胚的机械几何细胞接口
  • 批准号:
    23K17205
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multi-core fiber sensing using geometrical phase nonlinearity of optical polarization
利用光学偏振的几何相位非线性进行多芯光纤传感
  • 批准号:
    23K04616
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometrical structures in mathematical physics
数学物理中的几何结构
  • 批准号:
    RGPIN-2018-05413
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Understanding Kirkendall Pore Formation and Evolution: Correlating Compositional, Geometrical, and Thermal Influences
职业:了解柯肯德尔孔隙的形成和演化:关联成分、几何和热影响
  • 批准号:
    2143334
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Metric and planning of reliable robotic manipulation, equivalently measuring both geometrical and mechanical constraints
可靠的机器人操作的度量和规划,相当于测量几何和机械约束
  • 批准号:
    22H01457
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Computational homogenization of soft composite plates and shells toward elucidating high-order geometrical pattern transformation
软复合材料板壳的计算均质化以阐明高阶几何图案变换
  • 批准号:
    22K14142
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An advanced multiphase model for geometrical evolution and anomalous flows
几何演化和反常流动的高级多相模型
  • 批准号:
    FT210100165
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    ARC Future Fellowships
Topological and geometrical aspects of condensed matter systems
凝聚态系统的拓扑和几何方面
  • 批准号:
    2856645
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
The geometrical framework of General Relativity and String Theory
广义相对论和弦理论的几何框架
  • 批准号:
    2758423
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Bijective Combinatorics for Geometrical Structures
几何结构的双射组合
  • 批准号:
    2154242
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了