Geometrical structures in mathematical physics
数学物理中的几何结构
基本信息
- 批准号:RGPIN-2018-05413
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims at establishing and strengthening connections between mathematics and quantum physics. We believe this to be an important direction as such connections can bring (as they have done in the past) new insights in both fields. In general, using techniques of one field in another might lead to new ways of looking at problems and thus to discoveries that would be less easy to make if one stays within a closed area of research. On one hand, we are planning to use our insight on one differential equation important in mathematics (Painlevé-6) to reveal similarities between its structure and the structure of some other equations arising in mathematical and quantum physics (Korteweg-de Vries and Schrödinger equations). On the other hand, we propose to study the topological recursion approach in application to quantum mechanics. Topological recursion method, having recently appeared in mathematics, suggests that information about quantum mechanical systems might be encoded in an associated mathematical object called Riemann surface. We plan to discover consequences for physics of this new approach to quantum mechanics. Another part of the proposal suggests, on the contrary, to use methods of quantum field theories to enumerate mathematical objects, namely graphs on surfaces with certain properties. This is possible due to the correspondence established in our recent work between such graphs and Feynman diagrams of one particular quantum field theory. The fourth part of the proposal concerns the relationship between mathematical structures called cluster algebras and the very special so-called BPS (Bogomolnyi-Prasad-Sommerfield) states in quantum field theories. It turned out that certain numbers in cluster algebra theory count the number of such BPS states. This fact has been discovered by both physicists and mathematicians studying the same questions but using quite different approaches. We are planning to translate results of one area into the language of the other, and discover new implications of results of each field for the other. Students working on these projects, in addition to the mathematics involved, will also learn some physics, which will give them an excellent start in research on mathematical physics.
提出的研究旨在建立和加强数学与量子物理之间的联系。我们相信这是一个重要的方向,因为这种联系可以在这两个领域带来新的见解(就像它们过去所做的那样)。一般来说,将一个领域的技术应用于另一个领域可能会带来看待问题的新方法,从而获得如果停留在一个封闭的研究领域就不太容易获得的发现。一方面,我们计划利用我们对一个重要的数学微分方程(painlev<e:1> -6)的见解来揭示它的结构与数学和量子物理学中出现的其他一些方程(Korteweg-de Vries方程和Schrödinger方程)的结构之间的相似性。另一方面,我们提出研究拓扑递归方法在量子力学中的应用。拓扑递归方法是最近出现在数学中的一种方法,它提出量子力学系统的信息可能被编码在一个叫做黎曼曲面的相关数学对象中。我们计划发现这种量子力学新方法对物理学的影响。相反,该提案的另一部分建议使用量子场论的方法来列举数学对象,即具有某些性质的曲面上的图。这是可能的,因为我们在最近的工作中建立了这样的图和一个特定量子场论的费曼图之间的对应关系。该提案的第四部分涉及称为簇代数的数学结构与量子场理论中非常特殊的所谓BPS (Bogomolnyi-Prasad-Sommerfield)状态之间的关系。结果表明,聚类代数理论中的某些数字可以计算此类BPS状态的数量。物理学家和数学家都发现了这一事实,他们研究同样的问题,但使用的方法却截然不同。我们计划将一个领域的结果翻译成另一个领域的语言,并发现每个领域的结果对另一个领域的新含义。从事这些项目的学生,除了涉及的数学之外,还将学习一些物理,这将为他们在数学物理研究方面提供一个良好的开端。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shramchenko, Vasilisa其他文献
Shramchenko, Vasilisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shramchenko, Vasilisa', 18)}}的其他基金
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Geometrical structures in mathematical physics
数学物理中的几何结构
- 批准号:
RGPIN-2018-05413 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Riemann surfaces in geometry and analysis
几何和分析中的黎曼曲面
- 批准号:
358371-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Riemann surfaces in geometry and analysis
几何和分析中的黎曼曲面
- 批准号:
358371-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Riemann surfaces in geometry and analysis
几何和分析中的黎曼曲面
- 批准号:
358371-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Riemann surfaces in geometry and analysis
几何和分析中的黎曼曲面
- 批准号:
358371-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Frobenius manifolds, Hurwitz spaces and random matrix models
Frobenius 流形、Hurwitz 空间和随机矩阵模型
- 批准号:
358371-2008 - 财政年份:2012
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Pseudorandom numbers and algebraic studies on related mathematical structures
伪随机数及相关数学结构的代数研究
- 批准号:
23K03033 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical maintenance of left-right symmetry during vertebrate development
脊椎动物发育过程中左右对称的动态维持
- 批准号:
10797382 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
WILDMOD: Model Theory of wild mathematical structures, new perspectives via geometries and positive logic.
WILDMOD:狂野数学结构的模型理论,通过几何和正逻辑的新视角。
- 批准号:
EP/Y027833/1 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Fellowship
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
- 批准号:
10659817 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Information Coded in Mathematical Structures
以数学结构编码的信息
- 批准号:
2419591 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Study of deformation mechanism and mechanical properties of bundle structures based on collaboration between condensed matter physics and mathematical morphology
基于凝聚态物理与数学形态学协同的束结构变形机制与力学性能研究
- 批准号:
23H01299 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Physical Biology and Deep Learning for Antibiotic Resistance and Discovery
抗生素耐药性和发现的物理生物学和深度学习
- 批准号:
10773228 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Mapping spatiotemporal dynamics during enterovirus infection across cells and tissues
绘制肠道病毒跨细胞和组织感染过程中的时空动态
- 批准号:
10875953 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别: